{"title":"基于换能化原型优化网络的少次脑电睡眠分期","authors":"Jingcong Li, Chaohuang Wu, Jiahui Pan, Fei Wang","doi":"10.3389/fninf.2023.1297874","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is a commonly used technology for monitoring brain activities and diagnosing sleep disorders. Clinically, doctors need to manually stage sleep based on EEG signals, which is a time-consuming and laborious task. In this study, we propose a few-shot EEG sleep staging termed transductive prototype optimization network (TPON) method, which aims to improve the performance of EEG sleep staging. Compared with traditional deep learning methods, TPON uses a meta-learning algorithm, which generalizes the classifier to new classes that are not visible in the training set, and only have a few examples for each new class. We learn the prototypes of existing objects through meta-training, and capture the sleep features of new objects through the “learn to learn” method of meta-learning. The prototype distribution of the class is optimized and captured by using support set and unlabeled high confidence samples to increase the authenticity of the prototype. Compared with traditional prototype networks, TPON can effectively solve too few samples in few-shot learning and improve the matching degree of prototypes in prototype network. The experimental results on the public SleepEDF-2013 dataset show that the proposed algorithm outperform than most advanced algorithms in the overall performance. In addition, we experimentally demonstrate the feasibility of cross-channel recognition, which indicates that there are many similar sleep EEG features between different channels. In future research, we can further explore the common features among different channels and investigate the combination of universal features in sleep EEG. Overall, our method achieves high accuracy in sleep stage classification, demonstrating the effectiveness of this approach and its potential applications in other medical fields.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"26 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-shot EEG sleep staging based on transductive prototype optimization network\",\"authors\":\"Jingcong Li, Chaohuang Wu, Jiahui Pan, Fei Wang\",\"doi\":\"10.3389/fninf.2023.1297874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) is a commonly used technology for monitoring brain activities and diagnosing sleep disorders. Clinically, doctors need to manually stage sleep based on EEG signals, which is a time-consuming and laborious task. In this study, we propose a few-shot EEG sleep staging termed transductive prototype optimization network (TPON) method, which aims to improve the performance of EEG sleep staging. Compared with traditional deep learning methods, TPON uses a meta-learning algorithm, which generalizes the classifier to new classes that are not visible in the training set, and only have a few examples for each new class. We learn the prototypes of existing objects through meta-training, and capture the sleep features of new objects through the “learn to learn” method of meta-learning. The prototype distribution of the class is optimized and captured by using support set and unlabeled high confidence samples to increase the authenticity of the prototype. Compared with traditional prototype networks, TPON can effectively solve too few samples in few-shot learning and improve the matching degree of prototypes in prototype network. The experimental results on the public SleepEDF-2013 dataset show that the proposed algorithm outperform than most advanced algorithms in the overall performance. In addition, we experimentally demonstrate the feasibility of cross-channel recognition, which indicates that there are many similar sleep EEG features between different channels. In future research, we can further explore the common features among different channels and investigate the combination of universal features in sleep EEG. Overall, our method achieves high accuracy in sleep stage classification, demonstrating the effectiveness of this approach and its potential applications in other medical fields.\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2023.1297874\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2023.1297874","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Few-shot EEG sleep staging based on transductive prototype optimization network
Electroencephalography (EEG) is a commonly used technology for monitoring brain activities and diagnosing sleep disorders. Clinically, doctors need to manually stage sleep based on EEG signals, which is a time-consuming and laborious task. In this study, we propose a few-shot EEG sleep staging termed transductive prototype optimization network (TPON) method, which aims to improve the performance of EEG sleep staging. Compared with traditional deep learning methods, TPON uses a meta-learning algorithm, which generalizes the classifier to new classes that are not visible in the training set, and only have a few examples for each new class. We learn the prototypes of existing objects through meta-training, and capture the sleep features of new objects through the “learn to learn” method of meta-learning. The prototype distribution of the class is optimized and captured by using support set and unlabeled high confidence samples to increase the authenticity of the prototype. Compared with traditional prototype networks, TPON can effectively solve too few samples in few-shot learning and improve the matching degree of prototypes in prototype network. The experimental results on the public SleepEDF-2013 dataset show that the proposed algorithm outperform than most advanced algorithms in the overall performance. In addition, we experimentally demonstrate the feasibility of cross-channel recognition, which indicates that there are many similar sleep EEG features between different channels. In future research, we can further explore the common features among different channels and investigate the combination of universal features in sleep EEG. Overall, our method achieves high accuracy in sleep stage classification, demonstrating the effectiveness of this approach and its potential applications in other medical fields.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.