{"title":"Improving EEG classification of alcoholic and control subjects using DWT-CNN-BiGRU with various noise filtering techniques.","authors":"Nidhi Patel, Jaiprakash Verma, Swati Jain","doi":"10.3389/fninf.2025.1618050","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) signal analysis plays a vital role in diagnosing and monitoring alcoholism, where accurate classification of individuals into alcoholic and control groups is essential. However, the inherent noise and complexity of EEG signals pose significant challenges. This study investigates the impact of three signal denoising techniques' Discrete Wavelet Transform(DWT), Discrete Fourier Transform(DFT), and Discrete Cosine Transform (DCT) Non EEG signal classification performance. The motivation behind this study is to identify the most effective preprocessing method for enhancing deep learning model performance in this domain. A novel DWT-CNN-BiGRU model is proposed, which leverages CNN layers for spatial feature extraction and BiGRU layers for capturing temporal dependencies. Experimental results show that the DWT-based approach, combined with standard scaling, achieves the highest accuracy of 94%, with a precision of 0.94, a recall of 0.95, and an F1-score of 0.94. Compared to the baseline DWT-CNN-BiLSTM model, the proposed method provides a modest yet meaningful improvement of approximately 17% in classification accuracy. These findings highlight the superiority of DWT as a preprocessing method and validate the proposed model's effectiveness for EEG-based classification, contributing to the development of more reliable medical diagnostic tools.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1618050"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1618050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalogram (EEG) signal analysis plays a vital role in diagnosing and monitoring alcoholism, where accurate classification of individuals into alcoholic and control groups is essential. However, the inherent noise and complexity of EEG signals pose significant challenges. This study investigates the impact of three signal denoising techniques' Discrete Wavelet Transform(DWT), Discrete Fourier Transform(DFT), and Discrete Cosine Transform (DCT) Non EEG signal classification performance. The motivation behind this study is to identify the most effective preprocessing method for enhancing deep learning model performance in this domain. A novel DWT-CNN-BiGRU model is proposed, which leverages CNN layers for spatial feature extraction and BiGRU layers for capturing temporal dependencies. Experimental results show that the DWT-based approach, combined with standard scaling, achieves the highest accuracy of 94%, with a precision of 0.94, a recall of 0.95, and an F1-score of 0.94. Compared to the baseline DWT-CNN-BiLSTM model, the proposed method provides a modest yet meaningful improvement of approximately 17% in classification accuracy. These findings highlight the superiority of DWT as a preprocessing method and validate the proposed model's effectiveness for EEG-based classification, contributing to the development of more reliable medical diagnostic tools.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.