Food Bioscience最新文献

筛选
英文 中文
The highly stabilized biologically derived peptide VIESPPEI alleviates DSS-induced colitis in mice by preventing colonic atrophy and modulating gut microbiota 高度稳定的生物衍生肽 VIESPPEI 可通过防止结肠萎缩和调节肠道微生物群来缓解 DSS 诱导的小鼠结肠炎
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105090
{"title":"The highly stabilized biologically derived peptide VIESPPEI alleviates DSS-induced colitis in mice by preventing colonic atrophy and modulating gut microbiota","authors":"","doi":"10.1016/j.fbio.2024.105090","DOIUrl":"10.1016/j.fbio.2024.105090","url":null,"abstract":"<div><p>Ulcerative colitis (UC) is a recurrent gastrointestinal infection within the spectrum of inflammatory bowel disease, posing risks associated with long-term medication. Consequently, this study aimed to investigate the effects of novel duck liver protein-derived bioactive peptides, characterized by a higher safety profile, on dextran sulfate sodium (DSS)-induced colitis in mice. The results indicated that the retention rate of VIESPPEI remained above 80% following simulated gastrointestinal digestion <em>in vitro</em>, demonstrating strong stability and practical application potential. The peptide VIESPPEI was found to alleviate weight loss in colitis-afflicted mice, inhibit the elevation of the disease activity index (DAI), and significantly improve symptoms such as atrophy and shortening of the colon. Histological examination further confirmed that VIESPPEI intake promoted the recovery of acute colitis in mice. Additionally, it significantly reduced myeloperoxidase activity and increased superoxide dismutase and catalase activities in the colon tissues of UC mice. Notably, a substantial increase in beneficial gut microbiota and the populations of three beneficial bacteria species (<em>Anaplasma</em> spp., <em>Tannabacterium</em> spp., and <em>Bifidobacterium</em> spp.) that produce short-chain fatty acids, along with a decrease in pathogenic groups such as <em>Streptococcus</em> and <em>Turicibacter</em>, may account for the improvement in colitis observed in UC mice treated with VIESPPEI. This study provides new evidence that VIESPPEI alleviates UC and provides a theoretical basis for the development of functional peptide beverages.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-encapsulation of probiotic bacteria L. rhamnosus GG and β-carotene by a novel biphasic encapsulation technique: Stability and in vivo anti-inflammatory properties 利用新型双相包囊技术共同包囊益生菌鼠李糖GG和β-胡萝卜素:稳定性和体内抗炎特性
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105061
{"title":"Co-encapsulation of probiotic bacteria L. rhamnosus GG and β-carotene by a novel biphasic encapsulation technique: Stability and in vivo anti-inflammatory properties","authors":"","doi":"10.1016/j.fbio.2024.105061","DOIUrl":"10.1016/j.fbio.2024.105061","url":null,"abstract":"<div><p>In this study, β-carotene (βC) was encapsulated in liposomes and spray-dried with the probiotic bacteria <em>Lactobacillus rhamnosus</em> GG (LGG), to obtain a biphasic structure with two functional components. Initially, the liposomes loaded with βC resulted in large multivesicular vesicles (LMVV) with spherical morphology, mean size of 1191 nm and entrapment efficiency of 81.33%. Then, the spray-drying of the mixture βC-LMVV with the LGG resulted in biphasic dried microparticles (BDM) with a spherical shape, retention of 64,48% of βC, and LGG survivor above 90%. The BDM showed high storage stability for 90 days at room temperature and, at the dose of 2000 mg/kg of BDM did not cause any acute toxicity in <em>Wistar</em> rats. In addition, at the same dose, presented significant anti-inflammatory activity in carrageenan-induced paw edema and pleurisy. Thus, the produced BDM could be an innovative ingredient with functional properties and also an efficient encapsulation strategy for βC.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical properties, structure and regulatory effect on gut microbiota of dietary fiber extracted from soybean meal via dry fractionation 通过干法分馏从豆粕中提取的膳食纤维的理化性质、结构及其对肠道微生物群的调节作用
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105050
{"title":"Physicochemical properties, structure and regulatory effect on gut microbiota of dietary fiber extracted from soybean meal via dry fractionation","authors":"","doi":"10.1016/j.fbio.2024.105050","DOIUrl":"10.1016/j.fbio.2024.105050","url":null,"abstract":"<div><p>Currently, dry fractionation is employed to extract dietary fiber (DF) from food processing bypuroduct owing to its advantages of low energy and eco-friendly. Procedures of dry fractionation mainly include milling and air classification. Soybean meal (SBM) is a processing byproduct rich in DF. Few studies have used dry fractionation to extract SBM dietary fiber (SMF), and the physicochemical properties, structural characteristics, and activity of SMF extracted via dry fractionation remain unclear. Herein, SMF was prepared via dry fractionation and results showed that compared with that of SBM without pores and high crystallinity, SMF had loose and porous surface and low crystallinity. Moreover, the water holding capacity, oil holding capacity and swelling ability of SMF were significantly higher than SBM. After 24 h of <em>in vitro</em> fecal fermentation, the SMF group produced abundant short chain fatty acids (SCFA) such as acetic, propionic, and butyric acids and the total SCFA production was substantially higher than that in the inulin (INL) group. SMF also promoted the relative abundance of beneficial bacteria such as <em>Prevotella</em>, <em>Dialister</em>, and <em>Bifidobacterium</em> and reduced the relative abundance of harmful bacteria such as <em>Escherichia–Shigella</em>. In conclusion, SMF extracted via dry fractionation can significantly alter the relative abundance and diversity of gut microbiota and promote the production of SCFA, which is conducive to the regulation of the human gut microbiota. This study can provide insights into the preparation of DF via dry fractionation and provide theoretical basis for SMF to be used as a prebiotic.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence optimization and heterologous expression of xanthine oxidase inhibitory peptides in Escherichia coli 大肠杆菌中黄嘌呤氧化酶抑制肽的序列优化和异源表达
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-08 DOI: 10.1016/j.fbio.2024.105080
{"title":"Sequence optimization and heterologous expression of xanthine oxidase inhibitory peptides in Escherichia coli","authors":"","doi":"10.1016/j.fbio.2024.105080","DOIUrl":"10.1016/j.fbio.2024.105080","url":null,"abstract":"<div><p>To solve the problem of low efficiency and purity in preparation of active peptides through enzymatic hydrolysis, the xanthine oxidase (XO) inhibitory peptides were optimized according to structure-activity relationship and a heterologous expression system for these peptides was constructed. The XO inhibitory peptide AEAWMWR (IC<sub>50</sub> = 1.76 mM), which exhibited enhanced activity, was obtained by optimizing AEAQMWR (IC<sub>50</sub> = 8.85 mM) in this research. The optimized peptide AEAWMWR exhibited approximately a 5-fold increase in activity compared to the template peptide AEAQMWR. The optimization results indicated that replacing the non-hydrophobic amino acids in the middle of the sequence with W or adding W to the C-terminal of the sequence effectively improved the activity of peptides. Additionally, to further achieve low-cost and rapid preparation of the peptides AEAQMWR and AEAWMWR, the recombinant plasmids containing fusion proteins of tandem repetitive peptides were designed and expressed in <em>Escherichia coli</em>. The recombinant peptides AEAQMWR (IC<sub>50</sub> = 8.19 mM) and AEAWMWR (IC<sub>50</sub> = 1.57 mM) exhibited significant activity. These results demonstrate that rational optimization and microbial synthesis of peptides can efficiently prepare bio-active peptides.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212429224015104/pdfft?md5=a31be6a425c6b238d03b83410ada846a&pid=1-s2.0-S2212429224015104-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant protein LPxT-GYLEQ attenuates cognitive impairment by ameliorating oxidative stress in D-galactose-induced aging mice model 重组蛋白 LPxT-GYLEQ 通过改善 D-半乳糖诱导的衰老小鼠模型中的氧化应激减轻认知障碍
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-08 DOI: 10.1016/j.fbio.2024.105079
{"title":"Recombinant protein LPxT-GYLEQ attenuates cognitive impairment by ameliorating oxidative stress in D-galactose-induced aging mice model","authors":"","doi":"10.1016/j.fbio.2024.105079","DOIUrl":"10.1016/j.fbio.2024.105079","url":null,"abstract":"<div><p>Food-derived antioxidant peptides have been shown to have beneficial effects in scavenging excess free radicals. In this study, a novel multifunctional LPxTG-motif protein LPxT-GYLEQ was synthesized, and its molecular mechanism of alleviating cognitive impairment in a D-galactose (D-gal)-induced aging mice model was also investigated. The results confirmed the antioxidant effects of the LPxT-GYLEQ protein, which could scavenge excessive reactive oxygen species (ROS) in aging mice by regulating the c-Jun N-terminal kinase (JNK)/Nuclear factor erythroid 2-related factor 2 (Nrf2)/p38/Nuclear factor-k-gene binding (NF-κB) signal pathway, reduced the accumulation of β-amyloid protein (Aβ), restored the cognitive ability of mice, improved learning and memory behavior, effectively reduced the expression of inflammatory-related factors, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and increased the expression of anti-inflammatory factor interleukin-10 (IL-10). These may be related to the fact that the protein regulates the abundance of beneficial bacteria such as intestinal <em>Akkermansia Muciniphila</em> (<em>Akk</em>). All results suggest that the synthetic LPxT-GYLEQ protein may improve cognitive impairment and be a promising candidate for an anti-aging agent.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel antimicrobial peptide MP-4: Insights into its antimicrobial properties and intestinal regulation on E. coli-infected mice 新型抗菌肽 MP-4:其抗菌特性及其对大肠杆菌感染小鼠肠道调节的启示
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.104840
{"title":"A novel antimicrobial peptide MP-4: Insights into its antimicrobial properties and intestinal regulation on E. coli-infected mice","authors":"","doi":"10.1016/j.fbio.2024.104840","DOIUrl":"10.1016/j.fbio.2024.104840","url":null,"abstract":"<div><p>The quest for novel, potent antimicrobial agents with low resistance potential poses a significant challenge for the advancement of the food and medical sectors. This study aimed to elucidate the antibacterial potency of antimicrobial peptides derived from koumiss in a murine model. Leveraging an antimicrobial peptide database, six peptides (MP-1 to MP-6) were meticulously predicted and screened for their antibacterial properties. These peptides were subsequently synthesized using chemical solid-phase methods and their antibacterial activities were rigorously validated. Remarkably, among the six peptides, MP-4 demonstrated a profound antibacterial effect against <em>E</em>. <em>coli</em>, achieving rapid bacterial eradication within 240 min. Flow cytometry analysis further corroborated its significant bactericidal activity. <em>In vivo</em> experiments conducted on mice infected with <em>E. coli</em> revealed that oral administration of MP-4 significantly ameliorated symptoms such as lethargy, anorexia, and weight loss. Additionally, it effectively reduced the colonic <em>E. coli</em> burden, attenuated inflammatory responses, and favorably modulated the intestinal microbiota composition. This study not only validates the robust antibacterial activity of the koumiss-derived antimicrobial peptide MP-4, but also underscores its potential therapeutic application in mitigating <em>E. coli</em> infections and promoting intestinal health.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cinnamic acid and its derivatives on dipeptidyl peptidase 4: Structure-activity relationship and mechanism of inhibition 肉桂酸及其衍生物对二肽基肽酶 4 的影响:结构-活性关系和抑制机制
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.105076
{"title":"Cinnamic acid and its derivatives on dipeptidyl peptidase 4: Structure-activity relationship and mechanism of inhibition","authors":"","doi":"10.1016/j.fbio.2024.105076","DOIUrl":"10.1016/j.fbio.2024.105076","url":null,"abstract":"<div><p>Dipeptidyl peptidase 4 (DPP4), which breaks down glucagon-like peptide 1 (GLP-1), is closely associated with glucose metabolism, and the inhibition of this enzyme is one of the important targets for the treatment of diabetes. Traditionally cinnamon and bitter melon have been in wide use in diabetes treatment, and cinnamic acid (CIA) as its main ingredient is expected to be an ideal DPP4 inhibitor. <em>In vitro</em> inhibition experiments showed that CIA had the lowest IC<sub>50</sub> (33.56 ± 1.13 mM) compared to the other substances in the study, suggesting that it was more effective in inhibiting DPP4. Analyses showed that adding hydroxyl and methyl groups to CIA's aromatic ring reduced its effect on DPP4; CIA and its derivatives were inhibited in a mixed way. With the exception of ferulic acid (FA), CIA and its derivatives quenched the fluorescence of DPP4 via a static quenching mechanism. Thermodynamic parameters show that the binding of CIA (the most inhibitory compound) to DPP4 was spontaneous and driven by hydrogen bonding. Atomic force microscopy and circular dichroism spectroscopy analyses reveal that upon binding with DPP4, CIA underwent a conformational change. Molecular docking results highlight, while introducing hydroxyl and methoxy groups on the aromatic ring, the superior binding capacity of CIA diminished. The study confirms that CIA is an ideal inhibitor with the highest absolute value of binding energy (−5.8) and the lowest IC<sub>50</sub> compared to other substances. By clarifying the inhibition mechanism of DPP4,the study thus provides dietary guidance for diabetic patients.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the response mechanism of Pseudomonas plecoglossicida to high-temperature stress by transcriptomic analyses for 2-keto gluconic acid production 通过2-酮基葡萄糖酸产生的转录组分析探索褶皱假单胞菌对高温胁迫的响应机制
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.105063
{"title":"Exploring the response mechanism of Pseudomonas plecoglossicida to high-temperature stress by transcriptomic analyses for 2-keto gluconic acid production","authors":"","doi":"10.1016/j.fbio.2024.105063","DOIUrl":"10.1016/j.fbio.2024.105063","url":null,"abstract":"<div><p>High temperatures, particularly in summer, lead to decreased yields in the industrial application of <em>Pseudomonas plecoglossicida</em> for 2-keto gluconic acid (2KGA) fermentation. To address this, the alterations in the transcriptomics of <em>P. plecoglossicida</em> in response to high-temperature stress were examined at temperatures of 32 °C, 36 °C, and 40 °C. The analysis of differential expression revealed substantial discrepancies in the number of differentially expressed genes (DEGs) at 36 °C (357) and 40 °C (1,487), primarily affecting vital biological functions. Elevated temperatures resulted in a shift in the metabolic processing of glucose, transitioning from extracellular oxidation to intracellular phosphorylation. Notable changes were observed in metabolic pathways, including the pentose phosphate pathway and tricarboxylic acid cycle. A significant observation was the decline in the activity of genes associated with extracellular glucose oxidation, accompanied by an increase in the activity of genes involved in intracellular phosphorylation pathway. This indicates a prompt and dynamic response to high-temperature stress. The investigation revealed notable alterations in genes linked to glucose metabolism, emphasizing the strain's adaptive capabilities to endure high temperatures. The reveal of adaptations are crucial for optimizing 2KGA production in challenging industrial environments.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular docking and transcriptomic analysis reveal the mechanism of myosin-derived peptides activating bitter receptor of hT2R1 分子对接和转录组分析揭示肌球蛋白衍生肽激活 hT2R1 苦味受体的机制
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.105067
{"title":"Molecular docking and transcriptomic analysis reveal the mechanism of myosin-derived peptides activating bitter receptor of hT2R1","authors":"","doi":"10.1016/j.fbio.2024.105067","DOIUrl":"10.1016/j.fbio.2024.105067","url":null,"abstract":"<div><p>To better understand the bitterness effect and molecule mechanism of myosin-derived peptides activating bitter receptors, the interaction between myosin-derived peptides of dry-cured ham and bitter receptors was investigated by molecular docking and molecular dynamics simulation; the signal transduction mechanism of myosin-derived peptides was explored by HEK-293T cells using calcium imaging and transcriptomics analysis. Lower CDOCKER energy was observed during the interaction between myosin-derived peptides and hT2R1 by molecular docking compared with hT2R4, hT2R5, hT2R8, hT2R14 and hT2R16. Hydrogen bonds and hydrophobic interaction were the most important interaction forces which stabilized the interaction of hT2R1 and myosin-derived peptides. Compared with LEKEKSELK and TEELEEAKK, the RMSF values and EC<sub>50</sub> values of HVLATLGEK were lower, indicating that hT2R1 was more sensitive to HVLATLGEK stimulation. Transcriptomics and KEGG analyses showed that 767 differentially expressed genes were found and mainly involved in cAMP signaling pathway, neuroactive ligand-receptor interaction, calcium signaling pathway and MAPK signaling pathway after stimulating of HVLATLGEK. Protein-protein interaction network further demonstrated that DDIT3, FOS, FOSB, MYC, EGR1 and CCN2 were the key genes to connect the six functional clusters including ligand-receptor interaction and signal transduction.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-melanogenic effect of a novel oligosaccharide derived from almond on forskolin-stimulated melanogenesis in B16F10 melanoma cells 杏仁中提取的一种新型寡糖对 B16F10 黑色素瘤细胞中由福斯可林刺激的黑色素生成具有抗黑色素生成作用
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.105013
{"title":"Anti-melanogenic effect of a novel oligosaccharide derived from almond on forskolin-stimulated melanogenesis in B16F10 melanoma cells","authors":"","doi":"10.1016/j.fbio.2024.105013","DOIUrl":"10.1016/j.fbio.2024.105013","url":null,"abstract":"<div><p>The application of natural products for regulating skin pigmentation is increasingly being acknowledged due to their security and proven efficacy. Almond (<em>Amygdalus communis</em> L.) is an edible nut plant with significant nutritional value and medicinal attributes. In this research, oligosaccharide (ACO-II-1) was extracted and isolated applying gel chromatography techniques from the aqueous extract of almond kernel. Structural characterization of ACO-II-1 was conducted using ESI-MS, methylation analysis and 1D/2D-NMR. The findings indicated that ACO-II-1 was composed of fructose and glucose and the glycosidic bond predominantly featured <em>β</em>-D-Fruf-(1 → 2)-<em>β</em>-D-Fru-(1 → 6)-<em>α</em>-D-Glcp-(1 → 1)-<em>α</em>-D-Glcp. Moreover, ACO-Ⅱ-1 possessed strong antioxidant activity and notable inhibitory effect on melanogenesis in forskolin (FSK)-induced B16F10 melanoma cells. Subsequent mechanism investigation was conducted and suggested that the <em>anti</em>-melanogenic properties of ACO-Ⅱ-1 might be attributed to its modulation of the Mitogen-activated protein kinases (MAPKs) and β-catenin signaling pathways. These results indicated that edible plant derived ACO-II-1 might be served as promising inhibitor of hyperpigmentation with potential application in pharmaceutical and skin-care sector.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信