Food Bioscience最新文献

筛选
英文 中文
Natural aggregation of Lactobacillus: Mechanisms and influencing factors 乳酸菌的自然聚集:机制和影响因素
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105007
Shunhe Wang , Lulu Li , Leilei Yu , Fengwei Tian , Jianxin Zhao , Qixiao Zhai , Wei Chen
{"title":"Natural aggregation of Lactobacillus: Mechanisms and influencing factors","authors":"Shunhe Wang ,&nbsp;Lulu Li ,&nbsp;Leilei Yu ,&nbsp;Fengwei Tian ,&nbsp;Jianxin Zhao ,&nbsp;Qixiao Zhai ,&nbsp;Wei Chen","doi":"10.1016/j.fbio.2024.105007","DOIUrl":"10.1016/j.fbio.2024.105007","url":null,"abstract":"<div><p><em>Lactobacillus</em> aggregation is a bacterial behavior, in which <em>Lactobacillus</em> cells adhere to each other or other strains to form aggregates. Substantial evidence indicates that <em>Lactobacillus</em> aggregation is closely related to biofilm formation, adhesion, colonization, and host physiological functions. Current reviews on <em>Lactobacillus</em> aggregation are often limited to a few aspects, or serve as a single step to address other related problems. In this paper, we review the current state and characteristics of self- and co-aggregations, including aggregation percentages, influencing factors, molecular mechanisms, and functions. <em>Lactobacillus</em> aggregation is a strain-specific behavior, rather than a species-specific one, and the characteristics of both aggregations are similar. The same species of <em>Lactobacillus</em> exhibits a relatively broad range of aggregation percentage, and involved in different influencing factors and mechanisms. Moreover, the same factors and mechanisms also participate in different <em>Lactobacillus</em> aggregations. This is mainly because of the complexity of aggregations. Meanwhile, we also summarize the functions of aggregation, including enhancing bacterial survival, promoting biofilm formation and involving in host physiological regulation.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105007"},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomic and metatranscriptomic analyses of microbial genera and volatiles produced during the fermentation of doubanjiang meju 豆瓣酱发酵过程中产生的微生物菌属和挥发性物质的元基因组和元转录组分析
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105100
Liang Zhang , Yan Zeng , Jin Yu , Yufeng Li , Peibin Zeng
{"title":"Metagenomic and metatranscriptomic analyses of microbial genera and volatiles produced during the fermentation of doubanjiang meju","authors":"Liang Zhang ,&nbsp;Yan Zeng ,&nbsp;Jin Yu ,&nbsp;Yufeng Li ,&nbsp;Peibin Zeng","doi":"10.1016/j.fbio.2024.105100","DOIUrl":"10.1016/j.fbio.2024.105100","url":null,"abstract":"<div><p>Fermented broad beans (<em>Vicia faba</em> L.), commonly known as meju, serve as a crucial raw material for producing Pixian Doubanjiang (DBJ), a traditional condiment in Chinese cuisine. However, there is limited information on the dynamics of fungal populations and the activity shifts of key enzymes during DBJ meju fermentation. This study aimed to elucidate the microbial composition, active genera, expressed genes and pathways during the DBJ meju fermentation. The general chemical components, free amino acids, enzymes and volatile compounds were also investigated; the correlations between active genera and physicochemical factors were analyzed, at different fermentation stages. The results demonstrated that protease was the predominant enzyme during meju fermentation. A total of 32 major volatile compounds were identified, with most alcohols and aldehydes showing a sharp increase from the early to the middle stages, followed by stabilization until the end of fermentation. Significant shifts in metatranscriptomic composition at the genus level were observed, with <em>Aspergillus</em>, <em>Staphylococcus</em>, and <em>Tulasnella</em> emerging as the core active genera in the process. Notably, cellulase activity was positively correlated with the presence of <em>Tulasnella</em>. Additionally, <em>Aspergillus</em> and <em>Tulasnella</em> were found to play a crucial role in developing the unique aroma of DBJ meju. Our findings on the succession of active genera and their correlation with physicochemical factors are expected to provide substantial evidence for potential quality control and enhancement of this renowned Chinese condiment.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105100"},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acesulfame potassium induces hepatic inflammation and fatty acids accumulation via disturbance of carnitine metabolism and gut microbiota 安赛蜜钾通过干扰肉碱代谢和肠道微生物群诱发肝脏炎症和脂肪酸积累
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105101
Na Shou , Christopher Rensing , Qiwen Lin , Wenqian Xu , Keyi Fu , Xuefeng Yuan , Dandan Wu , Fan Wang , Yanzhong Li , Zunji Shi
{"title":"Acesulfame potassium induces hepatic inflammation and fatty acids accumulation via disturbance of carnitine metabolism and gut microbiota","authors":"Na Shou ,&nbsp;Christopher Rensing ,&nbsp;Qiwen Lin ,&nbsp;Wenqian Xu ,&nbsp;Keyi Fu ,&nbsp;Xuefeng Yuan ,&nbsp;Dandan Wu ,&nbsp;Fan Wang ,&nbsp;Yanzhong Li ,&nbsp;Zunji Shi","doi":"10.1016/j.fbio.2024.105101","DOIUrl":"10.1016/j.fbio.2024.105101","url":null,"abstract":"<div><p>The controversy surrounding the impact of acesulfame potassium (Ace-K) on metabolic health has been growing. Here, male C57BL/6 mice were given Ace-K for 11 weeks (sterile water as the control group, 40 mg/kg body weight as the low dose group, 120 mg/kg as the high dose group), subsequently gut microbiome and targeted metabolomics were conducted to evaluate the effect of Ace-K on host health. Gut microbiota was perturbed by Ace-K, as evidenced by the down-regulation of beneficial bacteria and the increased abundance of <em>Collinsella</em> associated with inflammation. Fatty acids metabolism was altered by Ace-K, as evidenced by elevated long chain fatty acids (LCFAs) in liver and serum. Notably, the reduction of related genes and proteins correlated to carnitine metabolism and hepatic carnitine metabolites by Ace-K led to a reduction in the <em>β</em>-oxidation of LCFAs, ultimately causing the accumulation of LCFAs. These findings uncovered new perspectives on Ace-K-induced hepatic inflammation and fatty acids accumulation.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105101"},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of apple pomace polyphenols using natural deep eutectic solvents: A sustainable approach 使用天然深共晶溶剂萃取苹果渣多酚:一种可持续的方法
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-12 DOI: 10.1016/j.fbio.2024.105083
Mengzhen Han , Mengxin Hou , Zhenpeng Gao
{"title":"Extraction of apple pomace polyphenols using natural deep eutectic solvents: A sustainable approach","authors":"Mengzhen Han ,&nbsp;Mengxin Hou ,&nbsp;Zhenpeng Gao","doi":"10.1016/j.fbio.2024.105083","DOIUrl":"10.1016/j.fbio.2024.105083","url":null,"abstract":"<div><p>To effectively utilize apple pomace resources, we extracted apple pomace polyphenols using natural deep eutectic solvent (NADES) as the medium, with a solvent-to-solid ratio of 50 mL/g, for a duration of 120 min. Compared to conventional extraction solvents (ethanol and methanol), four NADES significantly enhanced the extraction efficiency of polyphenols from apple pomace. Notably, NADES 1 (betaine: urea = 1:1, 30% water) and NADES 2 (betaine: malic acid = 1:1, 30% water) exhibited superior extraction capabilities, with maximum values reaching 5.245 ± 0.124 mg GAE/g pomace and 5.157 ± 0.164 mg GAE/g pomace, respectively, in Qinguan apple pomace. Both solvents reached their maximum extraction efficiency within 120 min, with NADES 1 achieving a maximum extraction amount of 4.8325 mg GAE/g and NADES 2 achieving 5.3039 mg GAE/g from Fuji apple pomace. NADES 1 and NADES 2 were more efficient in extracting monophenols such as quercetin, rutin, gallic acid, and procyanidin, whereas organic solvents (methanol and ethanol) were more effective for monophenols like methyl gallate and phlorizin. Furthermore, polyphenol extracts obtained using NADES from Fuji apple pomace displayed varying levels of antibacterial effectiveness, with NADES 4 (glucose: lactic acid = 1:5, 60% water) and NADES 2 showing superior efficacy against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. This comprehensive study not only demonstrated the potential of NADES in extracting polyphenols from apple pomace but also highlighted their applicability as natural preservatives in the food industry.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105083"},"PeriodicalIF":4.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications 作为可持续植物蛋白新兴来源的草豌豆蛋白:结构、改性、功能和应用
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-11 DOI: 10.1016/j.fbio.2024.105092
Mahmood Alizadeh Sani , Rassoul Mozafarpour , Ala Ghasemi kia , Sepideh Khorasani , Arash Dara , David Julian McClements
{"title":"Grass pea protein as an emerging source of sustainable plant proteins: Structure, modification, functionality, and applications","authors":"Mahmood Alizadeh Sani ,&nbsp;Rassoul Mozafarpour ,&nbsp;Ala Ghasemi kia ,&nbsp;Sepideh Khorasani ,&nbsp;Arash Dara ,&nbsp;David Julian McClements","doi":"10.1016/j.fbio.2024.105092","DOIUrl":"10.1016/j.fbio.2024.105092","url":null,"abstract":"<div><div>Grass pea is a legume crop with a protein content ranging from 20% to 30%, primarily composed of approximately 66% globulin, along with glutelin (15%), albumin (14%), and prolamin (5%). Grass pea protein (GPP) ingredients are commonly isolated using alkaline extraction and acid precipitation methods. The water solubility of GPP ingredients is approximately 60% at neutral pH. However, the resulting functional attributes of these ingredients are relatively poor, which limits their application in numerous food and beverage products. This review describes the grass pea protein as an emerging source of plant proteins including structure, modification, functionality, as well as its applications in food systems.</div><div>The functional attributes of GPP can be enhanced using various physical, chemical, and biological modification methods that alter the conformation, aggregation, or molecular weight of the proteins. Physical methods like ultrasonication, cold plasma, heat treatment, and high-pressure treatment, as well as chemical methods like protein-polysaccharide conjugation and enzymatic modification, have been used for this purpose. Modification techniques such as ultrasonication has the potential to enhance protein solubility by over 90% and also significantly improve emulsifying, foaming, and gelation properties of GPPs by more than two-fold. The properties of GPPs can be characterized using a variety of analytical methods including UV–visible spectroscopy, surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In conclusion, GPP holds great potential for application in the formulation of plant-based foods and beverages in the food industry due to its good functional and nutritional properties.</div></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105092"},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics: A review 冷链物流过程中基于凝胶多糖的生鲜产品的智能质量控制:综述
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-11 DOI: 10.1016/j.fbio.2024.105081
Shize Lu , Min Zhang , Baoguo Xu , Zhimei Guo
{"title":"Intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics: A review","authors":"Shize Lu ,&nbsp;Min Zhang ,&nbsp;Baoguo Xu ,&nbsp;Zhimei Guo","doi":"10.1016/j.fbio.2024.105081","DOIUrl":"10.1016/j.fbio.2024.105081","url":null,"abstract":"<div><p>Gelatinous polysaccharide-based fresh products are influenced by environmental and temperature changes, and maintaining their quality and freshness has always been a challenge. Intelligent management and control of cold chain logistics systems have been extensively used in transporting and storing these goods to overcome the problem. This review introduces common quality deterioration issues, including those encountered during the transportation and storage of these products, such as softening, water loss, and color changes. The application of intelligent detection technologies, including gas detection, intelligent label, and spectral detection is reviewed to achieve real-time monitoring and evaluation of product status. This article also introduces the Internet of Things, wireless sensor networks, and radio frequency identification for product data transmission. It utilizes artificial neural networks and digital twins to build quality models, achieving better management of gelatinous polysaccharide-based fresh products in the cold chain. Moreover, some preservation techniques are used to increase the longevity of these products in storage and reduce losses in the cold chain. These techniques include irradiation, chemical treatment, and coating preservation. This review will, hopefully, encourage additional work that may help reach the goal of having better intelligent quality control of gelatinous polysaccharide-based fresh products during cold chain logistics.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105081"},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating transcriptomics and metabolomics differences offers insights into the mechanisms of muscular fat deposition in common carp (Cyprinus carpio) 研究转录组学和代谢组学的差异有助于了解鲤鱼肌肉脂肪沉积的机制
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-11 DOI: 10.1016/j.fbio.2024.105082
Kexin Zhang , Tianqi Liu , Zhipeng Sun, Cuiyun Lu, Rongbin Na, Yanchun Sun, Xianhu Zheng
{"title":"Investigating transcriptomics and metabolomics differences offers insights into the mechanisms of muscular fat deposition in common carp (Cyprinus carpio)","authors":"Kexin Zhang ,&nbsp;Tianqi Liu ,&nbsp;Zhipeng Sun,&nbsp;Cuiyun Lu,&nbsp;Rongbin Na,&nbsp;Yanchun Sun,&nbsp;Xianhu Zheng","doi":"10.1016/j.fbio.2024.105082","DOIUrl":"10.1016/j.fbio.2024.105082","url":null,"abstract":"<div><p>With the global population increasing and lifestyle improving, the demand for high-quality nutritional aquatic foods has been rising. Muscle fat is a crucial nutritional index for evaluating the quality of fish flesh. However, the comprehensive and systematic understanding of the molecular mechanism underlying differences in muscle fat deposition remains insufficient. In this study, we integrated transcriptomics and metabolomics of selected samples with extremely high and low muscle fat in common carp (<em>Cyprinus carpio</em>), the major freshwater aquaculture fish in Asia, to identify critical genes, metabolites and metabolic pathways. We totally identified 204 differentially expressed genes (DEGs) and 1528 differentially accumulated metabolites (DAMs). Glycerolipid, glycerophospholipid and glyoxylate and dicarboxylate metabolisms were enriched through both transcriptomics and metabolomics. These lipid metabolism pathways may be regulated by some critical signal transduction pathways, including Extracellular matrix [ECM]-receptor interaction, mTOR signaling pathway and FoxO signaling pathway. Combined with the validation of gene expression and biochemical indices, a supposed regulatory network was established. To our knowledge, it is the first study to apply a multi-omics approach in fish with naturally different muscle fat to comprehensively elucidate the mechanism. This study could deepen our understanding of the molecular mechanism of muscle fat deposition and be helpful for improving the quality of fish.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105082"},"PeriodicalIF":4.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vanillin-crosslinked gelatin-polyvinyl alcohol aerogels: Improved physicochemical properties and antimicrobial activity 香兰素交联明胶-聚乙烯醇气凝胶:改善理化特性和抗菌活性
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105084
Xin Wang, Jiayi Wang, Lijun Han, Bingjie Liu, Xianghong Meng
{"title":"Vanillin-crosslinked gelatin-polyvinyl alcohol aerogels: Improved physicochemical properties and antimicrobial activity","authors":"Xin Wang,&nbsp;Jiayi Wang,&nbsp;Lijun Han,&nbsp;Bingjie Liu,&nbsp;Xianghong Meng","doi":"10.1016/j.fbio.2024.105084","DOIUrl":"10.1016/j.fbio.2024.105084","url":null,"abstract":"<div><p>Crosslinking is a promising way to fabricate high-performance aerogels. In this study, vanillin (Van) crosslinked gelatin–polyvinyl alcohol (Gel−PVA) aerogels were prepared by vacuum freeze-drying method. The effects of different addition levels of Van on FTIR spectra, microstructures and physicochemical properties including water stability, mechanical properties, thermal stability and thermal insulation properties of aerogels were characterized, and antimicrobial activity of aerogels were validated. The results showed that Van exerted its crosslinking function through Schiff base bonding with Gel and hydrogen bonding with Gel and PVA. Although Van addition caused a slight decline in the thermal insulation performance and the obvious increase in pore diameter of aerogels, moderate Van crosslinking contributed to water stability, mechanical properties and thermal stability of aerogels. Besides, Van crosslinked Gel−PVA aerogel could effectively inhibit the growth of <em>E. coli</em> and <em>B. cinerea</em>. This suggests that the aerogel has promising applications in antimicrobial food packaging.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105084"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degraded sweet corn cob polysaccharides modulate T2DM-induced abnormalities in hepatic lipid metabolism via the bile acid-related FXR-SHP and FXR-FGF15-FGFR4 pathways 降解甜玉米棒多糖通过胆汁酸相关的 FXR-SHP 和 FXR-FGF15-FGFR4 通路调节 T2DM 诱导的肝脂代谢异常
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105085
Weiye Xiu, Xin Wang, Zhiguo Na, Shiyou Yu, Chenchen Li, Jingyang Wang, Mengyuan Yang, Chenxi Yang, Yongqiang Ma
{"title":"Degraded sweet corn cob polysaccharides modulate T2DM-induced abnormalities in hepatic lipid metabolism via the bile acid-related FXR-SHP and FXR-FGF15-FGFR4 pathways","authors":"Weiye Xiu,&nbsp;Xin Wang,&nbsp;Zhiguo Na,&nbsp;Shiyou Yu,&nbsp;Chenchen Li,&nbsp;Jingyang Wang,&nbsp;Mengyuan Yang,&nbsp;Chenxi Yang,&nbsp;Yongqiang Ma","doi":"10.1016/j.fbio.2024.105085","DOIUrl":"10.1016/j.fbio.2024.105085","url":null,"abstract":"<div><p>Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by dysregulation of glucose and lipid metabolism. This study aimed to elucidate the mechanism through which a degraded sweet corn cob polysaccharide (UE-DSCCP-A) mitigates T2DM by modulating hepatic lipid metabolism. Biochemical indices pertinent to lipid metabolism were assessed, and liver pathology was examined in T2DM mice following UE-DSCCP-A treatment. Additionally, metabolomics, PCR, and Western blot analyses were employed to investigate the underlying mechanisms involved. These findings indicated that UE-DSCCP-A ameliorated hepatic lipid metabolism disorders, decreased lipid accumulation, and mitigated hepatic fibrosis. Untargeted metabolomics analysis revealed that UE-DSCCP-A modulated pathways associated with steroid biosynthesis and bile acid synthesis and metabolism in T2DM mice. The bile acid assay results demonstrated that UE-DSCCP-A treatment reduced bile acid levels in both the serum and liver but increased fecal bile acid levels in T2DM mice. Furthermore, alterations in bile acid distribution within the liver were observed. UE-DSCCP-A has the capacity to activate the hepatic FXR-SHP pathway as well as the gut-liver axis involving FXR-FGF15-FGFR4 signaling. Consequently, UE-DSCCP-A is capable of modulating critical target genes and proteins associated with bile acid synthesis and metabolism, regulating steroid biosynthesis, and influencing bile acid synthesis and transport within the liver. Additionally, it has beneficial effects on lipid metabolism disorders in individuals with T2DM. Thus, UE-DSCCP-A represents a promising candidate for functional foods with inherent hypoglycemic properties.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105085"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycidol-induced hepatocyte apoptosis via endoplasmic reticulum stress: The underlying role of the gut-liver axis 甘氨醇通过内质网应激诱导肝细胞凋亡:肠肝轴的潜在作用
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105070
Yuan Yuan, Xiaoxuan Yin, Lu Li, Ziyue Wang, Haiyang Yan
{"title":"Glycidol-induced hepatocyte apoptosis via endoplasmic reticulum stress: The underlying role of the gut-liver axis","authors":"Yuan Yuan,&nbsp;Xiaoxuan Yin,&nbsp;Lu Li,&nbsp;Ziyue Wang,&nbsp;Haiyang Yan","doi":"10.1016/j.fbio.2024.105070","DOIUrl":"10.1016/j.fbio.2024.105070","url":null,"abstract":"<div><p>Glycidol (CAS: 556-52-5), a known carcinogen and genotoxicant, is often found in refined vegetable oils. Human exposure predominantly occurs through consumption of these oils and their byproducts, which contain glycidyl esters (GEs). Upon ingestion, GEs are metabolized to release glycidol, posing substantial health hazards. Historical studies have reported the tumorigenic properties of glycidol across various organs in mice models, encompassing the stomach, liver, lungs, brain, mammary gland, and skin. In this study, we employed a Balb/c mice model to investigate the hepatotoxic effects of glycidol following exposure to escalating doses (0, 25, 50, and 100 mg/kg bw/day). The hepatotoxicity was evidenced by a significant elevation in liver enzymes (ALT, AST), indicative of liver cell damage. Furthermore, biochemical analysis revealed heightened levels of oxidative stress indicators (SOD, MDA, GSH) and the upregulation of endoplasmic reticulum stress proteins, underscoring the cellular stress response. The induction of hepatocyte apoptosis served as a direct marker of liver damage caused by glycidol exposure. Additionally, glycidol altered the composition of intestinal microbiota and short-chain fatty acids (SCFAs), which unbalanced homeostasis. Gut barrier integrity markers (ZO-1, Claudin-1, Occludin, TLR4, LPS) indicated increased permeability of harmful substances to the liver via the gut-liver axis, which exacerbated hepatic injury. These findings highlight glycidol's disruption of gut homeostasis and its hepatotoxic potential.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105070"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信