Food Bioscience最新文献

筛选
英文 中文
Microencapsulated cinnamon essential oil extends bread shelf life and alters microbial diversity 微胶囊肉桂精油延长面包保质期并改变微生物多样性
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105078
Shuang Zhao , Yuxin Liu , Ting Zhang , Weifen Qiu , Xing Chen , Guangyu Wang
{"title":"Microencapsulated cinnamon essential oil extends bread shelf life and alters microbial diversity","authors":"Shuang Zhao ,&nbsp;Yuxin Liu ,&nbsp;Ting Zhang ,&nbsp;Weifen Qiu ,&nbsp;Xing Chen ,&nbsp;Guangyu Wang","doi":"10.1016/j.fbio.2024.105078","DOIUrl":"10.1016/j.fbio.2024.105078","url":null,"abstract":"<div><p>The extension of bread shelf life through natural preservatives has received significant attention, yet the effects of such preservatives under specific storage conditions and their impact on microbial diversity remain underexplored. This study aimed to prepare and characterize microencapsulated cinnamon essential oil (CEO-Ms) using the spray drying method. The CEO-Ms were analyzed for their morphology, structure, and thermal stability using scanning electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis. Furthermore, antimicrobial sachets containing CEO-Ms were prepared to evaluate the impact on the shelf life and microbial diversity of packaged bread. The results confirmed the successful encapsulation of CEO, preserving its volatile components and demonstrating excellent thermal stability. Notably, CEO-Ms effectively prolong the shelf life of bread without direct contact, while also inhibiting dominant genera and enhancing community diversity. These findings demonstrate that CEO-Ms can alter the microbial community structure and diversity, providing a new insight into the relationship between microbial dynamics and food shelf life.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105078"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antihypertensive mechanism of the medicine food homology compound solution with high ACE inhibition rate based on network pharmacology and molecular docking 基于网络药理学和分子对接的高 ACE 抑制率药食同源化合物溶液的降压机制
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105077
Min Xu , Ruiqi Ren , Zhixing Zhang , Xiaodong Li , Lu Liu , Hongyu Liu , Yu Xia , Md Masumuzzaman
{"title":"Antihypertensive mechanism of the medicine food homology compound solution with high ACE inhibition rate based on network pharmacology and molecular docking","authors":"Min Xu ,&nbsp;Ruiqi Ren ,&nbsp;Zhixing Zhang ,&nbsp;Xiaodong Li ,&nbsp;Lu Liu ,&nbsp;Hongyu Liu ,&nbsp;Yu Xia ,&nbsp;Md Masumuzzaman","doi":"10.1016/j.fbio.2024.105077","DOIUrl":"10.1016/j.fbio.2024.105077","url":null,"abstract":"<div><p>Certain instances of medicine food homology (MFH) have an antihypertensive effect, which has a therapeutic effect on hypertension, but their mechanism in treating hypertension and improving blood pressure is still unclear. The objective of this study is to analyze the potential bioactive substances and the hypotensive mechanism by which the MFH compound solution (Hawthorn:Lycium barbarum:Cassia = 4:1:1) with a high angiotensin-converting enzyme (ACE) inhibition rate. This will be achieved through the use of network pharmacology and molecular docking techniques, which will be further validated through experimental testing. The key components in the MFH compound solution were obtained by constructing the component-disease target network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to explore the pathways of the MFH compound solution participating in anti-hypertension. The content of the main active ingredients in the MFH compound solution was identified by high-performance liquid chromatography (HPLC). The main active components were quercetin, beta-sitosterol, stigmasterol, kaempferol, and isorhamnetin, while the identified core genes were AKT1 and TP53. Through pathway analysis, the mechanisms of the MFH compound solution against hypertension may be Lipid and atherosclerosis, Calcium signaling pathway, PI3K-AKT signaling pathway, etc. Moreover, the molecular docking of five key compounds and the top five targets verified the reliability of network pharmacology results. HPLC analysis revealed that these five active substances were detected in the MFH compound solution, where kaempferol was the most abundant. This study revealed that the MFH compound exerted a hypotensive effect through multiple targets and pathways.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105077"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly stabilized biologically derived peptide VIESPPEI alleviates DSS-induced colitis in mice by preventing colonic atrophy and modulating gut microbiota 高度稳定的生物衍生肽 VIESPPEI 可通过防止结肠萎缩和调节肠道微生物群来缓解 DSS 诱导的小鼠结肠炎
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105090
Xiankang Fan , Hui Zhou , Wei Quan , Qingwu Shen , Daodong Pan , Jie Luo
{"title":"The highly stabilized biologically derived peptide VIESPPEI alleviates DSS-induced colitis in mice by preventing colonic atrophy and modulating gut microbiota","authors":"Xiankang Fan ,&nbsp;Hui Zhou ,&nbsp;Wei Quan ,&nbsp;Qingwu Shen ,&nbsp;Daodong Pan ,&nbsp;Jie Luo","doi":"10.1016/j.fbio.2024.105090","DOIUrl":"10.1016/j.fbio.2024.105090","url":null,"abstract":"<div><p>Ulcerative colitis (UC) is a recurrent gastrointestinal infection within the spectrum of inflammatory bowel disease, posing risks associated with long-term medication. Consequently, this study aimed to investigate the effects of novel duck liver protein-derived bioactive peptides, characterized by a higher safety profile, on dextran sulfate sodium (DSS)-induced colitis in mice. The results indicated that the retention rate of VIESPPEI remained above 80% following simulated gastrointestinal digestion <em>in vitro</em>, demonstrating strong stability and practical application potential. The peptide VIESPPEI was found to alleviate weight loss in colitis-afflicted mice, inhibit the elevation of the disease activity index (DAI), and significantly improve symptoms such as atrophy and shortening of the colon. Histological examination further confirmed that VIESPPEI intake promoted the recovery of acute colitis in mice. Additionally, it significantly reduced myeloperoxidase activity and increased superoxide dismutase and catalase activities in the colon tissues of UC mice. Notably, a substantial increase in beneficial gut microbiota and the populations of three beneficial bacteria species (<em>Anaplasma</em> spp., <em>Tannabacterium</em> spp., and <em>Bifidobacterium</em> spp.) that produce short-chain fatty acids, along with a decrease in pathogenic groups such as <em>Streptococcus</em> and <em>Turicibacter</em>, may account for the improvement in colitis observed in UC mice treated with VIESPPEI. This study provides new evidence that VIESPPEI alleviates UC and provides a theoretical basis for the development of functional peptide beverages.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105090"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifunctional natural treasure based on a “one stone, many birds” strategy for designing health-promoting applications: Tordylium apulum 基于 "一石多鸟 "战略的多功能天然宝藏,用于设计促进健康的应用:蕨类植物
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105088
Nilofar , Gokhan Zengin , Abdullahi Ibrahim Uba , Nurgul Abul , Ilhami Gulcin , Ismail Koyuncu , Ozgur Yuksekdag , Sathish Kumar M Ponnaiya , Surendar Tessappan , Filomena Nazzaro , Florinda Fratianni , Francesca Coppola , Alina Kalyniukova , Gizem Emre , Vasil Andruch
{"title":"A multifunctional natural treasure based on a “one stone, many birds” strategy for designing health-promoting applications: Tordylium apulum","authors":"Nilofar ,&nbsp;Gokhan Zengin ,&nbsp;Abdullahi Ibrahim Uba ,&nbsp;Nurgul Abul ,&nbsp;Ilhami Gulcin ,&nbsp;Ismail Koyuncu ,&nbsp;Ozgur Yuksekdag ,&nbsp;Sathish Kumar M Ponnaiya ,&nbsp;Surendar Tessappan ,&nbsp;Filomena Nazzaro ,&nbsp;Florinda Fratianni ,&nbsp;Francesca Coppola ,&nbsp;Alina Kalyniukova ,&nbsp;Gizem Emre ,&nbsp;Vasil Andruch","doi":"10.1016/j.fbio.2024.105088","DOIUrl":"10.1016/j.fbio.2024.105088","url":null,"abstract":"<div><p>Wild plants provide important bioactive compounds, and their analysis relies heavily on selecting the right extraction techniques and solvents. This study was conducted to determine the phenolic content and biopharmaceutical potential of four different extracts (ethyl acetate, ethanol, 70% ethanol, and water) from the aerial parts of wild plant <em>Tordylium apulum</em> L. The biochemical profile of the extract was screened using high performance liquid chromatography -mass spectrometry (HPLC-MS) analysis. The total phenolic and flavonoid content was examined using the Folin-Ciocalteu assay and the aluminium trichloride assay, respectively. The antioxidant activity was evaluated through several tests, including 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), phosphomolybdenum (PBD), and metal chelating activity (MCA). Five types of enzyme inhibition activity were tested against acetylcholinesterase (AChE), butrylcholinesterase (BChE), tyrosinase, <em>α-</em>amylase, and <em>α</em>-glucosidase. Additionally, For the first time, the inhibitory activity of <em>T</em>. <em>apulum</em> extract against human carbonic anhydrase isoenzymes I and II (hCA-I and hCA-II) was evaluated. Fifty-five compounds for negative ionization mode, and twenty-eight compounds for positive ionization mode were recorded in HPLC-MS analysis and they were polyphenolic, flavonoids, carbohydrates, sugar alcohol and amino acids. These results indicate that different solvents extract varying levels of antioxidants from <em>T</em>. <em>apulum</em>, with ethanol and water extracts generally exhibiting superior antioxidant activities. The ethanol extract of <em>T</em>. <em>apulum</em> exhibited the maximum contents of total phenolics measuring 33.71 mg gallic acid equivalent (GAE)/g. The ethanol extract exhibited the highest inhibition of AChE with 2.28 mg galanthamine equivalent (GALAE)/g. The ethyl acetate and ethanol extracts also showed the highest hCA-I and hCA-II inhibition potential, respectively. The ethanol-water and water extracts acted on the biofilm of <em>E. coli</em> (49.93% and 45.22%, respectively), and the biofilm of <em>P. aeruginosa</em> (50.68% and 44.46%, respectively). The extracts were tested on different cell lines for cytotoxic potentials and in particular the water extract induced the apoptotic pathways in cervical cancer (HELA) cell lines. In conclusion, <em>T</em>. <em>apulum</em> exhibit multidirectional biological properties and it could be considered as a versatile agent for the development of health-promoting applications.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105088"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-encapsulation of probiotic bacteria L. rhamnosus GG and β-carotene by a novel biphasic encapsulation technique: Stability and in vivo anti-inflammatory properties 利用新型双相包囊技术共同包囊益生菌鼠李糖GG和β-胡萝卜素:稳定性和体内抗炎特性
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105061
Fernando Freitas de Lima , Talita Cesarim Mendonça , Cristian Mauricio Barreto Pinilla , Izabela Dutra Alvim , Mariana Alves Gragnani Vido , Eneida de Paula , Leila Maria Spadoti , Adriana Torres Silva e Alves
{"title":"Co-encapsulation of probiotic bacteria L. rhamnosus GG and β-carotene by a novel biphasic encapsulation technique: Stability and in vivo anti-inflammatory properties","authors":"Fernando Freitas de Lima ,&nbsp;Talita Cesarim Mendonça ,&nbsp;Cristian Mauricio Barreto Pinilla ,&nbsp;Izabela Dutra Alvim ,&nbsp;Mariana Alves Gragnani Vido ,&nbsp;Eneida de Paula ,&nbsp;Leila Maria Spadoti ,&nbsp;Adriana Torres Silva e Alves","doi":"10.1016/j.fbio.2024.105061","DOIUrl":"10.1016/j.fbio.2024.105061","url":null,"abstract":"<div><p>In this study, β-carotene (βC) was encapsulated in liposomes and spray-dried with the probiotic bacteria <em>Lactobacillus rhamnosus</em> GG (LGG), to obtain a biphasic structure with two functional components. Initially, the liposomes loaded with βC resulted in large multivesicular vesicles (LMVV) with spherical morphology, mean size of 1191 nm and entrapment efficiency of 81.33%. Then, the spray-drying of the mixture βC-LMVV with the LGG resulted in biphasic dried microparticles (BDM) with a spherical shape, retention of 64,48% of βC, and LGG survivor above 90%. The BDM showed high storage stability for 90 days at room temperature and, at the dose of 2000 mg/kg of BDM did not cause any acute toxicity in <em>Wistar</em> rats. In addition, at the same dose, presented significant anti-inflammatory activity in carrageenan-induced paw edema and pleurisy. Thus, the produced BDM could be an innovative ingredient with functional properties and also an efficient encapsulation strategy for βC.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105061"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical properties, structure and regulatory effect on gut microbiota of dietary fiber extracted from soybean meal via dry fractionation 通过干法分馏从豆粕中提取的膳食纤维的理化性质、结构及其对肠道微生物群的调节作用
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-10 DOI: 10.1016/j.fbio.2024.105050
Ruyang Chen , Mengmeng Zhang , Yizhe Zhang , Zhaoli Tong , Xiuhuai Li , Xiaohan Wu , Dan Li , Hui Wu , Ping He
{"title":"Physicochemical properties, structure and regulatory effect on gut microbiota of dietary fiber extracted from soybean meal via dry fractionation","authors":"Ruyang Chen ,&nbsp;Mengmeng Zhang ,&nbsp;Yizhe Zhang ,&nbsp;Zhaoli Tong ,&nbsp;Xiuhuai Li ,&nbsp;Xiaohan Wu ,&nbsp;Dan Li ,&nbsp;Hui Wu ,&nbsp;Ping He","doi":"10.1016/j.fbio.2024.105050","DOIUrl":"10.1016/j.fbio.2024.105050","url":null,"abstract":"<div><p>Currently, dry fractionation is employed to extract dietary fiber (DF) from food processing bypuroduct owing to its advantages of low energy and eco-friendly. Procedures of dry fractionation mainly include milling and air classification. Soybean meal (SBM) is a processing byproduct rich in DF. Few studies have used dry fractionation to extract SBM dietary fiber (SMF), and the physicochemical properties, structural characteristics, and activity of SMF extracted via dry fractionation remain unclear. Herein, SMF was prepared via dry fractionation and results showed that compared with that of SBM without pores and high crystallinity, SMF had loose and porous surface and low crystallinity. Moreover, the water holding capacity, oil holding capacity and swelling ability of SMF were significantly higher than SBM. After 24 h of <em>in vitro</em> fecal fermentation, the SMF group produced abundant short chain fatty acids (SCFA) such as acetic, propionic, and butyric acids and the total SCFA production was substantially higher than that in the inulin (INL) group. SMF also promoted the relative abundance of beneficial bacteria such as <em>Prevotella</em>, <em>Dialister</em>, and <em>Bifidobacterium</em> and reduced the relative abundance of harmful bacteria such as <em>Escherichia–Shigella</em>. In conclusion, SMF extracted via dry fractionation can significantly alter the relative abundance and diversity of gut microbiota and promote the production of SCFA, which is conducive to the regulation of the human gut microbiota. This study can provide insights into the preparation of DF via dry fractionation and provide theoretical basis for SMF to be used as a prebiotic.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105050"},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence optimization and heterologous expression of xanthine oxidase inhibitory peptides in Escherichia coli 大肠杆菌中黄嘌呤氧化酶抑制肽的序列优化和异源表达
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-08 DOI: 10.1016/j.fbio.2024.105080
Zhenjie Mao , Hong Jiang , Yuanhui Zhao , Jianan Sun , Xiangzhao Mao
{"title":"Sequence optimization and heterologous expression of xanthine oxidase inhibitory peptides in Escherichia coli","authors":"Zhenjie Mao ,&nbsp;Hong Jiang ,&nbsp;Yuanhui Zhao ,&nbsp;Jianan Sun ,&nbsp;Xiangzhao Mao","doi":"10.1016/j.fbio.2024.105080","DOIUrl":"10.1016/j.fbio.2024.105080","url":null,"abstract":"<div><p>To solve the problem of low efficiency and purity in preparation of active peptides through enzymatic hydrolysis, the xanthine oxidase (XO) inhibitory peptides were optimized according to structure-activity relationship and a heterologous expression system for these peptides was constructed. The XO inhibitory peptide AEAWMWR (IC<sub>50</sub> = 1.76 mM), which exhibited enhanced activity, was obtained by optimizing AEAQMWR (IC<sub>50</sub> = 8.85 mM) in this research. The optimized peptide AEAWMWR exhibited approximately a 5-fold increase in activity compared to the template peptide AEAQMWR. The optimization results indicated that replacing the non-hydrophobic amino acids in the middle of the sequence with W or adding W to the C-terminal of the sequence effectively improved the activity of peptides. Additionally, to further achieve low-cost and rapid preparation of the peptides AEAQMWR and AEAWMWR, the recombinant plasmids containing fusion proteins of tandem repetitive peptides were designed and expressed in <em>Escherichia coli</em>. The recombinant peptides AEAQMWR (IC<sub>50</sub> = 8.19 mM) and AEAWMWR (IC<sub>50</sub> = 1.57 mM) exhibited significant activity. These results demonstrate that rational optimization and microbial synthesis of peptides can efficiently prepare bio-active peptides.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105080"},"PeriodicalIF":4.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212429224015104/pdfft?md5=a31be6a425c6b238d03b83410ada846a&pid=1-s2.0-S2212429224015104-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant protein LPxT-GYLEQ attenuates cognitive impairment by ameliorating oxidative stress in D-galactose-induced aging mice model 重组蛋白 LPxT-GYLEQ 通过改善 D-半乳糖诱导的衰老小鼠模型中的氧化应激减轻认知障碍
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-08 DOI: 10.1016/j.fbio.2024.105079
Yiping Yang , Shuyi Lu , Yu Liang , Xubin Tu , Xiaoqun Zeng , Li Wang , Daodong Pan , Tao Zhang , Zhen Wu
{"title":"Recombinant protein LPxT-GYLEQ attenuates cognitive impairment by ameliorating oxidative stress in D-galactose-induced aging mice model","authors":"Yiping Yang ,&nbsp;Shuyi Lu ,&nbsp;Yu Liang ,&nbsp;Xubin Tu ,&nbsp;Xiaoqun Zeng ,&nbsp;Li Wang ,&nbsp;Daodong Pan ,&nbsp;Tao Zhang ,&nbsp;Zhen Wu","doi":"10.1016/j.fbio.2024.105079","DOIUrl":"10.1016/j.fbio.2024.105079","url":null,"abstract":"<div><p>Food-derived antioxidant peptides have been shown to have beneficial effects in scavenging excess free radicals. In this study, a novel multifunctional LPxTG-motif protein LPxT-GYLEQ was synthesized, and its molecular mechanism of alleviating cognitive impairment in a D-galactose (D-gal)-induced aging mice model was also investigated. The results confirmed the antioxidant effects of the LPxT-GYLEQ protein, which could scavenge excessive reactive oxygen species (ROS) in aging mice by regulating the c-Jun N-terminal kinase (JNK)/Nuclear factor erythroid 2-related factor 2 (Nrf2)/p38/Nuclear factor-k-gene binding (NF-κB) signal pathway, reduced the accumulation of β-amyloid protein (Aβ), restored the cognitive ability of mice, improved learning and memory behavior, effectively reduced the expression of inflammatory-related factors, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and increased the expression of anti-inflammatory factor interleukin-10 (IL-10). These may be related to the fact that the protein regulates the abundance of beneficial bacteria such as intestinal <em>Akkermansia Muciniphila</em> (<em>Akk</em>). All results suggest that the synthetic LPxT-GYLEQ protein may improve cognitive impairment and be a promising candidate for an anti-aging agent.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105079"},"PeriodicalIF":4.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel antimicrobial peptide MP-4: Insights into its antimicrobial properties and intestinal regulation on E. coli-infected mice 新型抗菌肽 MP-4:其抗菌特性及其对大肠杆菌感染小鼠肠道调节的启示
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.104840
Mengmeng Zhang , Quan Shuang , Kunjie Guo , Fengmei Zhang , Yanan Xia
{"title":"A novel antimicrobial peptide MP-4: Insights into its antimicrobial properties and intestinal regulation on E. coli-infected mice","authors":"Mengmeng Zhang ,&nbsp;Quan Shuang ,&nbsp;Kunjie Guo ,&nbsp;Fengmei Zhang ,&nbsp;Yanan Xia","doi":"10.1016/j.fbio.2024.104840","DOIUrl":"10.1016/j.fbio.2024.104840","url":null,"abstract":"<div><p>The quest for novel, potent antimicrobial agents with low resistance potential poses a significant challenge for the advancement of the food and medical sectors. This study aimed to elucidate the antibacterial potency of antimicrobial peptides derived from koumiss in a murine model. Leveraging an antimicrobial peptide database, six peptides (MP-1 to MP-6) were meticulously predicted and screened for their antibacterial properties. These peptides were subsequently synthesized using chemical solid-phase methods and their antibacterial activities were rigorously validated. Remarkably, among the six peptides, MP-4 demonstrated a profound antibacterial effect against <em>E</em>. <em>coli</em>, achieving rapid bacterial eradication within 240 min. Flow cytometry analysis further corroborated its significant bactericidal activity. <em>In vivo</em> experiments conducted on mice infected with <em>E. coli</em> revealed that oral administration of MP-4 significantly ameliorated symptoms such as lethargy, anorexia, and weight loss. Additionally, it effectively reduced the colonic <em>E. coli</em> burden, attenuated inflammatory responses, and favorably modulated the intestinal microbiota composition. This study not only validates the robust antibacterial activity of the koumiss-derived antimicrobial peptide MP-4, but also underscores its potential therapeutic application in mitigating <em>E. coli</em> infections and promoting intestinal health.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 104840"},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cinnamic acid and its derivatives on dipeptidyl peptidase 4: Structure-activity relationship and mechanism of inhibition 肉桂酸及其衍生物对二肽基肽酶 4 的影响:结构-活性关系和抑制机制
IF 4.8 1区 农林科学
Food Bioscience Pub Date : 2024-09-07 DOI: 10.1016/j.fbio.2024.105076
Jiaying Li, Xiaoping Yang, Chunhong Xiong, Jinsheng Zhang, Ganhui Huang
{"title":"Cinnamic acid and its derivatives on dipeptidyl peptidase 4: Structure-activity relationship and mechanism of inhibition","authors":"Jiaying Li,&nbsp;Xiaoping Yang,&nbsp;Chunhong Xiong,&nbsp;Jinsheng Zhang,&nbsp;Ganhui Huang","doi":"10.1016/j.fbio.2024.105076","DOIUrl":"10.1016/j.fbio.2024.105076","url":null,"abstract":"<div><p>Dipeptidyl peptidase 4 (DPP4), which breaks down glucagon-like peptide 1 (GLP-1), is closely associated with glucose metabolism, and the inhibition of this enzyme is one of the important targets for the treatment of diabetes. Traditionally cinnamon and bitter melon have been in wide use in diabetes treatment, and cinnamic acid (CIA) as its main ingredient is expected to be an ideal DPP4 inhibitor. <em>In vitro</em> inhibition experiments showed that CIA had the lowest IC<sub>50</sub> (33.56 ± 1.13 mM) compared to the other substances in the study, suggesting that it was more effective in inhibiting DPP4. Analyses showed that adding hydroxyl and methyl groups to CIA's aromatic ring reduced its effect on DPP4; CIA and its derivatives were inhibited in a mixed way. With the exception of ferulic acid (FA), CIA and its derivatives quenched the fluorescence of DPP4 via a static quenching mechanism. Thermodynamic parameters show that the binding of CIA (the most inhibitory compound) to DPP4 was spontaneous and driven by hydrogen bonding. Atomic force microscopy and circular dichroism spectroscopy analyses reveal that upon binding with DPP4, CIA underwent a conformational change. Molecular docking results highlight, while introducing hydroxyl and methoxy groups on the aromatic ring, the superior binding capacity of CIA diminished. The study confirms that CIA is an ideal inhibitor with the highest absolute value of binding energy (−5.8) and the lowest IC<sub>50</sub> compared to other substances. By clarifying the inhibition mechanism of DPP4,the study thus provides dietary guidance for diabetic patients.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105076"},"PeriodicalIF":4.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信