FEMS yeast research最新文献

筛选
英文 中文
Dynamics of the lipid body lipidome in the oleaginous yeast Yarrowia sp. 含油酵母亚罗酵母脂体脂质体的动态变化
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae021
Apoorva Ravindra Joshi, Vitthal T Barvkar, Akanksha Kashikar, Prashant Gaikwad, Ameeta Ravikumar
{"title":"Dynamics of the lipid body lipidome in the oleaginous yeast Yarrowia sp.","authors":"Apoorva Ravindra Joshi, Vitthal T Barvkar, Akanksha Kashikar, Prashant Gaikwad, Ameeta Ravikumar","doi":"10.1093/femsyr/foae021","DOIUrl":"10.1093/femsyr/foae021","url":null,"abstract":"<p><p>Time-dependent changes in the lipid body (LB) lipidome of two oleaginous yeasts, Yarrowia lipolytica NCIM 3589 and Yarrowia bubula NCIM 3590 differing in growth temperature was investigated. LB size and lipid content were higher in Y. lipolytica based on microscopy, Feret, and integrated density analysis with lipid accumulation and mobilization occurring at 48 h in both strains. Variations in LB lipidome were reflected in interfacial tension (59.67 and 68.59 mN m-1) and phase transition temperatures (30°C-100°C and 60°C-100°C) for Y. lipolytica and Y. bubula, respectively. Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis revealed neutral lipids (NLs), phospholipids, sphingolipids, sterols, and fatty acids as the major classes present in both strains while fatty acid amides were seen only in Y. lipolytica. Amongst the lipid classes, a few species were present in abundance with a number of lipids being less dominant. Permutational multivariate analysis of variance (PERMANOVA) and Analysis of covariance (ANOCOVA) analysis suggest 22 lipids belonging to NLs, fatty acid amides, and free fatty acids were found to be statistically different between the two strains. Analysis of the ratios between different lipid components suggest changes in LB size and mobilization as a function of time. The results indicate influence of temperature and strain variation on the dynamics of LB lipidome in Yarrowia species.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1. Kluyveromyces marxianus 在钾浓度极低的情况下也能生长良好,这得益于高亲和性钾转运体 Hak1。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae031
Klara Papouskova, Joel Akinola, Francisco J Ruiz-Castilla, John P Morrissey, Jose Ramos, Hana Sychrova
{"title":"The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1.","authors":"Klara Papouskova, Joel Akinola, Francisco J Ruiz-Castilla, John P Morrissey, Jose Ramos, Hana Sychrova","doi":"10.1093/femsyr/foae031","DOIUrl":"10.1093/femsyr/foae031","url":null,"abstract":"<p><p>The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Z3EV promoter system to create the strongest yeast promoter. 改进 Z3EV 启动子系统,创建最强的酵母启动子。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae032
Rina Higuchi, Yuri Fujita, Shotaro Namba, Hisao Moriya
{"title":"Improving the Z3EV promoter system to create the strongest yeast promoter.","authors":"Rina Higuchi, Yuri Fujita, Shotaro Namba, Hisao Moriya","doi":"10.1093/femsyr/foae032","DOIUrl":"10.1093/femsyr/foae032","url":null,"abstract":"<p><p>Promoters for artificial control of gene expression are central tools in genetic engineering. In the budding yeast Saccharomyces cerevisiae, a variety of constitutive and controllable promoters with different strengths have been constructed using endogenous gene promoters, synthetic transcription factors and their binding sequences, and artificial sequences. However, there have been no attempts to construct the highest strength promoter in yeast cells. In this study, by incrementally increasing the binding sequences of the synthetic transcription factor Z3EV, we were able to construct a promoter (P36) with ~1.4 times the strength of the TDH3 promoter. This is stronger than any previously reported promoter. Although the P36 promoter exhibits some leakage in the absence of induction, the expression induction by estradiol is maintained. When combined with a multicopy plasmid, it can express up to ~50% of total protein as a heterologous protein. This promoter system can be used to gain knowledge about the cell physiology resulting from the ultimate overexpression of excess proteins and is expected to be a useful tool for heterologous protein expression in yeast.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid identification of the predominant azole-resistant genotype in Candida tropicalis. 快速鉴定热带念珠菌中主要的抗唑基因型。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae025
Kuo-Yun Tseng, Yu-Chieh Liao, Yin-Zhi Chen, Feng-Chi Chen, Feng-Jui Chen, Huey-Kang Sytwu, Li-Yun Hsieh, Chung-Yu Lan, Hsiu-Jung Lo
{"title":"Rapid identification of the predominant azole-resistant genotype in Candida tropicalis.","authors":"Kuo-Yun Tseng, Yu-Chieh Liao, Yin-Zhi Chen, Feng-Chi Chen, Feng-Jui Chen, Huey-Kang Sytwu, Li-Yun Hsieh, Chung-Yu Lan, Hsiu-Jung Lo","doi":"10.1093/femsyr/foae025","DOIUrl":"10.1093/femsyr/foae025","url":null,"abstract":"<p><p>Candida tropicalis is a leading cause of nonalbicans candidemia in tropical/subtropical areas and a predominant genotype of azole-resistant C. tropicalis clinical isolates belongs to clade 4. The aim of this study was to reveal markers for rapidly identifying the predominant azole-resistant C. tropicalis genotype. We analysed XYR1, one of the six genes used in the multilocus sequence typing analysis, and SNQ2, an ATP-binding cassette transporter in 281 C. tropicalis, including 120 and 161 from Taiwan and global areas, respectively. Intriguingly, the first 4-mer of codon sequences ATRA of CTRG_05978 (96/119 versus 21/162, P < .001, at phi = 0. 679) and the SNQ2 A2977G resulting in amino acid I993V alternation (105/118 versus 12/163, P < .001, at phi = 0.81) was significantly associated with the clade 4 genotype. The sensitivity and specificity of the clade 4 genotype detection with a combination of SNPs of CTRG_05978 and SNQ2 were 0.812 and 0.994, respectively, at phi = 0.838. Furthermore, we successfully established a TaqMan SNP genotyping assay to identify the clade 4 genotype. Our findings suggest that to improve the management of C. tropicalis infections, rapidly identifying azole-resistant C. tropicalis by detecting SNPs of CTRG_05978 and SNQ2 is promising.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species. 探索特定葡萄酒酵母对不同外源氧化还原辅助因子前体的发酵代谢反应。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae029
Viwe Tyibilika, Mathabatha E Setati, Audrey Bloem, Benoit Divol, Carole Camarasa
{"title":"Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species.","authors":"Viwe Tyibilika, Mathabatha E Setati, Audrey Bloem, Benoit Divol, Carole Camarasa","doi":"10.1093/femsyr/foae029","DOIUrl":"10.1093/femsyr/foae029","url":null,"abstract":"<p><p>The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose. 培养具有高温酒精发酵纤维生物糖能力的 Ogataea polymorpha 菌株。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae007
Roksolana Vasylyshyn, Olena Dmytruk, Andriy Sybirnyy, Justyna Ruchała
{"title":"Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose.","authors":"Roksolana Vasylyshyn, Olena Dmytruk, Andriy Sybirnyy, Justyna Ruchała","doi":"10.1093/femsyr/foae007","DOIUrl":"10.1093/femsyr/foae007","url":null,"abstract":"<p><p>Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation. 构建经济型木糖利用酿酒酵母菌及其乙醇发酵。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae001
Fan Li, Wenxin Bai, Yuan Zhang, Zijian Zhang, Deguo Zhang, Naidong Shen, Jingwei Yuan, Guomiao Zhao, Xiaoyan Wang
{"title":"Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation.","authors":"Fan Li, Wenxin Bai, Yuan Zhang, Zijian Zhang, Deguo Zhang, Naidong Shen, Jingwei Yuan, Guomiao Zhao, Xiaoyan Wang","doi":"10.1093/femsyr/foae001","DOIUrl":"10.1093/femsyr/foae001","url":null,"abstract":"<p><p>Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fermenting the future - on the benefits of a bioart collaboration. 发酵未来--生物艺术合作的益处。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae004
Diethard Mattanovich, Martin Altvater, Özge Ata, Simone Bachleitner
{"title":"Fermenting the future - on the benefits of a bioart collaboration.","authors":"Diethard Mattanovich, Martin Altvater, Özge Ata, Simone Bachleitner","doi":"10.1093/femsyr/foae004","DOIUrl":"10.1093/femsyr/foae004","url":null,"abstract":"<p><p>In this article we explore the intersection of science and art through a collaboration between us scientists and the bioartists Anna Dimitriu and Alex May, focusing on the interface of yeast biotechnology and art. The collaboration, originally initiated in 2018, resulted in three major artworks: CULTURE, depicting the evolution of yeast and human societies; FERMENTING FUTURES, illustrating a synthetic autotrophic yeast and its link to lactic acid production; and WOOD SPIRIT-AMBER ACID, inspired by the VIVALDI project targeting CO2 reduction to methanol. We emphasize the reciprocal nature of the collaboration, detailing the scientific insights gained and the impact of artistic perspectives on us as researchers. We also highlight the historical connection between art and science, particularly in the Renaissance periods, and underscore the educational value of integrating art into science not only to support public engagement and science dissemination, but also to widen our own perceptions in our research.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Euf1 transcription factor as a titrator of erythritol-inducible promoters in Yarrowia lipolytica; insight into the structure, splicing, and regulation mechanism. 利用 Euf1 转录因子作为脂肪溶解亚罗藻中赤藓糖醇诱导启动子的滴定剂;深入了解结构、剪接和调控机制。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae027
Ewelina Celińska, Paulina Korpys-Woźniak, Maria Gorczyca, Jean-Marc Nicaud
{"title":"Using Euf1 transcription factor as a titrator of erythritol-inducible promoters in Yarrowia lipolytica; insight into the structure, splicing, and regulation mechanism.","authors":"Ewelina Celińska, Paulina Korpys-Woźniak, Maria Gorczyca, Jean-Marc Nicaud","doi":"10.1093/femsyr/foae027","DOIUrl":"10.1093/femsyr/foae027","url":null,"abstract":"<p><p>Controllable regulatory elements, like inducible, titratable promoters, are highly desired in synthetic biology toolboxes. A set of previously developed erythritol-inducible promoters along with an engineered Yarrowia lipolytica host strain were shown to be a very potent expression platform. In this study, we push the previously encountered limits of the synthetic promoters' titratability (by the number of upstream motifs) by using a compatible transcription factor, Euf1, as the promoter titrator. Overexpression of spliced EUF1 turned out to be very efficient in promoting expression from the compatible promoter, however, the erythritol-inducible character of the promoter was then lost. Analysis of the EUF1's splicing pattern suggests that the intron removal is promoted in the presence of erythritol, but is not dependent on it. The 3D structures of spliced versus unspliced Euf1 were modeled, and ligand-binding strength was calculated and compared. Furthermore, the EUF1-dependent expression profile under different chemical stimulants was investigated. Depletion of carbon source was identified as the significant factor upregulating the expression from the Euf1-dependent promoter (2-10-fold). Considering these findings and transcriptomics data, a new mechanism of the Euf1-regulated promoter action is proposed, involving a 'catabolite repression' transcription factor-Adr1, both acting on the same ERY-inducible promoter.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel fluorescence-activated cell sorting (FACS)-based screening identified ATG14, the gene required for pexophagy in the methylotrophic yeast. 一种基于荧光激活细胞分选(FACS)的新型筛选方法发现了ATG14,它是甲基营养酵母中进行pexophagy所需的基因。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2024-01-09 DOI: 10.1093/femsyr/foae022
Kosuke Shiraishi, Yumi Arima, Motoharu Nakamura, Takumi Nakatsuji, Masahide Oku, Yasuyoshi Sakai
{"title":"A novel fluorescence-activated cell sorting (FACS)-based screening identified ATG14, the gene required for pexophagy in the methylotrophic yeast.","authors":"Kosuke Shiraishi, Yumi Arima, Motoharu Nakamura, Takumi Nakatsuji, Masahide Oku, Yasuyoshi Sakai","doi":"10.1093/femsyr/foae022","DOIUrl":"10.1093/femsyr/foae022","url":null,"abstract":"<p><p>Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信