{"title":"Assessing methods for estimating microbial lag phase duration: a comparative analysis using Saccharomyces cerevisiae empirical and simulated data.","authors":"Monika Opalek, Dominika Wloch-Salamon, Bogna J Smug","doi":"10.1093/femsyr/foaf033","DOIUrl":null,"url":null,"abstract":"<p><p>The lag phase is a temporary, nonreplicative period observed when a microbial population is introduced to a new, nutrient-rich environment. Although the theoretical concept of growth phases is clear, the practical application of methods for estimating lag lengths is often challenging. In fact, there are two distinct assumptions: (i) that cells do not divide at all during the lag phase or (ii) that they divide but at a suboptimal rate. Therefore, the choice of method should consider not only technical limitations but also consistency with the biological context. Here, we investigate the performance of the most common lag estimation methods, using empirical and simulated datasets. We apply different biological scenarios and simulate curves with varying parameters (i.e. growth rate, noise level, and frequency of measurements) to test their impact on the estimated lag phase duration. Our validation shows that infrequent measurements, low growth rate, longer lag phases, or higher level of noise in the measurements result in higher bias and higher variance of lag estimation. Additionally, in case of noisy data, the methods relying on model fitting perform best.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lag phase is a temporary, nonreplicative period observed when a microbial population is introduced to a new, nutrient-rich environment. Although the theoretical concept of growth phases is clear, the practical application of methods for estimating lag lengths is often challenging. In fact, there are two distinct assumptions: (i) that cells do not divide at all during the lag phase or (ii) that they divide but at a suboptimal rate. Therefore, the choice of method should consider not only technical limitations but also consistency with the biological context. Here, we investigate the performance of the most common lag estimation methods, using empirical and simulated datasets. We apply different biological scenarios and simulate curves with varying parameters (i.e. growth rate, noise level, and frequency of measurements) to test their impact on the estimated lag phase duration. Our validation shows that infrequent measurements, low growth rate, longer lag phases, or higher level of noise in the measurements result in higher bias and higher variance of lag estimation. Additionally, in case of noisy data, the methods relying on model fitting perform best.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.