{"title":"The chromosomal evolutionary lineage of the genus Zygosaccharomyces.","authors":"Atsushi Sato, Yasuo Ohnishi","doi":"10.1093/femsyr/foad017","DOIUrl":"https://doi.org/10.1093/femsyr/foad017","url":null,"abstract":"<p><p>Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/e6/foad017.PMC10035502.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9352585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rice-based fermented products: the functional properties of the microorganisms in the defined starter contributing to melanogenesis inhibition activity.","authors":"Orrarat Sangkaew, Chulee Yompakdee","doi":"10.1093/femsyr/foad030","DOIUrl":"https://doi.org/10.1093/femsyr/foad030","url":null,"abstract":"<p><p>Rice contains numerous nutrients and biologically active compounds. The phytochemical composition of rice varies among cultivars, leading to diversities in biological activities. Fermentation is an efficient way of improving nutrient bioavailability and the functional properties of raw materials. It enhances and/or synthesizes the compounds with health-promoting or decreased antinutritive compounds during the fermentation process. Rice-based fermented products have been reported for enhancing various biological activities, including antioxidant, anti-cancer, anti-diabetes, anti-wrinkle and anti-melanogenesis activities. Melanogenesis, melanin biosynthesis, is the cause of human skin pigmentation; however, the accumulation of melanin leads to skin hyper-pigmentary disorders, such as freckles and melasma. In this review, the information on rice-based fermented products has been assembled to illustrate the fermented rice properties, especially melanogenesis inhibition activity, including functional roles of the microorganisms in the fermented rice products.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9661130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana Lynne Hawkins, Jess Ryder, Soon A Lee, Katie Parish-Virtue, Bruno Fedrizzi, Matthew R Goddard, Sarah J Knight
{"title":"Mixed yeast communities contribute to regionally distinct wine attributes.","authors":"Diana Lynne Hawkins, Jess Ryder, Soon A Lee, Katie Parish-Virtue, Bruno Fedrizzi, Matthew R Goddard, Sarah J Knight","doi":"10.1093/femsyr/foad005","DOIUrl":"10.1093/femsyr/foad005","url":null,"abstract":"<p><p>There is evidence that vineyard yeast communities are regionally differentiated, but the extent to which this contributes to wine regional distinctiveness is not yet clear. This study represents the first experimental test of the hypothesis that mixed yeast communities-comprising multiple, region-specific, isolates, and species-contribute to regional wine attributes. Yeast isolates were sourced from uninoculated Pinot Noir fermentations from 17 vineyards across Martinborough, Marlborough, and Central Otago in New Zealand. New methodologies for preparing representative, mixed species inoculum from these significantly differentiated regional yeast communities in a controlled, replicable manner were developed and used to inoculate Pinot Noir ferments. A total of 28 yeast-derived aroma compounds were measured in the resulting wines via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Yeast community region of origin had a significant impact on wine aroma, explaining ∼10% of the observed variation, which is in line with previous reports of the effects of region-specific Saccharomyces cerevisiae isolates on Sauvignon Blanc ferments. This study shows that regionally distinct, mixed yeast communities can modulate wine aroma compounds in a regionally distinct manner and are in line with the hypothesis that there is a microbial component to regional distinctiveness, or terroir, for New Zealand Pinot Noir.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9333036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pranas Grigaitis, Samira L van den Bogaard, Bas Teusink
{"title":"Elevated energy costs of biomass production in mitochondrial respiration-deficient Saccharomyces cerevisia.","authors":"Pranas Grigaitis, Samira L van den Bogaard, Bas Teusink","doi":"10.1093/femsyr/foad008","DOIUrl":"https://doi.org/10.1093/femsyr/foad008","url":null,"abstract":"<p><p>Microbial growth requires energy for maintaining the existing cells and producing components for the new ones. Microbes therefore invest a considerable amount of their resources into proteins needed for energy harvesting. Growth in different environments is associated with different energy demands for growth of yeast Saccharomyces cerevisiae, although the cross-condition differences remain poorly characterized. Furthermore, a direct comparison of the energy costs for the biosynthesis of the new biomass across conditions is not feasible experimentally; computational models, on the contrary, allow comparing the optimal metabolic strategies and quantify the respective costs of energy and nutrients. Thus in this study, we used a resource allocation model of S. cerevisiae to compare the optimal metabolic strategies between different conditions. We found that S. cerevisiae with respiratory-impaired mitochondria required additional energetic investments for growth, while growth on amino acid-rich media was not affected. Amino acid supplementation in anaerobic conditions also was predicted to rescue the growth reduction in mitochondrial respiratory shuttle-deficient mutants of S. cerevisiae. Collectively, these results point to elevated costs of resolving the redox imbalance caused by de novo biosynthesis of amino acids in mitochondria. To sum up, our study provides an example of how resource allocation modeling can be used to address and suggest explanations to open questions in microbial physiology.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9202516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Cristina Vergara, María José Leiva, María Victoria Mestre, Fabio Vazquez, María Cristina Nally, Yolanda Paola Maturano
{"title":"Non-saccharomyces yeast probiotics: revealing relevance and potential.","authors":"Silvia Cristina Vergara, María José Leiva, María Victoria Mestre, Fabio Vazquez, María Cristina Nally, Yolanda Paola Maturano","doi":"10.1093/femsyr/foad041","DOIUrl":"10.1093/femsyr/foad041","url":null,"abstract":"<p><p>Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41108691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoichi Yamada, Atsuki Shiroma, Suguru Hirai, Jun Iwasaki
{"title":"Zuo1, a ribosome-associated J protein, is involved in glucose repression in Saccharomyces cerevisiae.","authors":"Yoichi Yamada, Atsuki Shiroma, Suguru Hirai, Jun Iwasaki","doi":"10.1093/femsyr/foad038","DOIUrl":"https://doi.org/10.1093/femsyr/foad038","url":null,"abstract":"<p><p>In Saccharomyces cerevisiae, the J-protein Zuo1 and the nonconventional Hsp70 homologue Ssz1 stimulate the ATPase activity of the chaperone proteins Ssb1 and Ssb2 (Ssb1/2), which are associated with the ribosomes. The dephosphorylation of sucrose nonfermenting 1 (Snf1) on Thr210 is required for glucose repression. The Ssb1/2 and 14-3-3 proteins Bmh1 and Bmh2 appear to be responsible for the dephosphorylation of Snf1 on Thr210 and glucose repression. Here, we investigated the role of Zuo1 in glucose repression. The zuo1∆ strain as well as the ssb1∆ssb2∆ strain exhibited a glucose-specific growth defect during logarithmic growth on glucose. Many of the respiratory chain genes examined were statistically significantly upregulated, but less than 2-fold, in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain on glucose. In addition, excessive phosphorylation of Snf1 on Thr210 was observed in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain in the presence of glucose. The mRNA levels of SSB1/2 and BMH1 were statistically significantly reduced by approximately 0.5- to 0.8-fold relative to the wild-type level in the zuo1∆ strain on glucose. These results suggest that Zuo1 is responsible for glucose repression, possibly by increasing the mRNA levels of SSB1/2 and BMH1 during growth on glucose.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Bai, Cheng Cheng, Meng-Lin Sun, Jun Li, Yue Zou, Quanyu Zhao, Xin-Qing Zhao
{"title":"Production of single cell oil by two novel nonconventional yeast strains of Curvibasidium sp. isolated from medicinal lichen.","authors":"Long Bai, Cheng Cheng, Meng-Lin Sun, Jun Li, Yue Zou, Quanyu Zhao, Xin-Qing Zhao","doi":"10.1093/femsyr/foad026","DOIUrl":"https://doi.org/10.1093/femsyr/foad026","url":null,"abstract":"<p><p>Oleaginous yeasts utilize renewable resources to produce lipids, which benefits sustainable development, and it is of great interest to screen robust lipid producers. Curvibasidium sp. belongs to nonconventional yeast that are very limitedly studied. Here, two cold-adaptive strains of Curvibasidium sp., namely, Y230 and Y231, isolated from the medicinal lichen Usnea diffracta were investigated for their potential in lipid production. Genome mining of Curvibasidium sp. Y231 was performed, and the special features related to fatty acid biosynthesis were revealed. Glucose, xylose, and glycerol were tested as sole carbon sources for yeast cell growth and lipid production. The total lipid contents of Curvibasidium sp. Y230 and Y231 range from 38.43% to 54.62% of the cell dry cell weight at 20°C, and glucose is the optimal carbon source. These results indicate that the Curvibasidium sp. strains are promising for sustainable lipid production. Our study provides basis for exploration of lichen-derived strains for biotechnological applications, and also benefits utilization of other nonconventional yeasts for sustainable production based on genome-based studies.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodolfo Bizarria, Tatiane de Castro Pietrobon, Henrique Ferreira, Andre Rodrigues
{"title":"Polymorphisms of rDNA genes in Cyberlindnera yeast suggest birth-and-death evolution events.","authors":"Rodolfo Bizarria, Tatiane de Castro Pietrobon, Henrique Ferreira, Andre Rodrigues","doi":"10.1093/femsyr/foad032","DOIUrl":"10.1093/femsyr/foad032","url":null,"abstract":"<p><p>In eukaryotes, the ribosome machinery is encoded by repeats of the ribosomal RNA genes: 26/28S, 18S, 5.8S, and 5S, structured in tandem arrays and frequently homogenized within a genome. This homogenization is thought to be driven by concerted evolution, evolving as a unit, which contributes to its target as the species barcode in modern taxonomy. However, high heterogeneity of rDNA genes has been reported, including in Saccharomycotina yeasts. Here, we describe the polymorphisms and heterogeneity of D1/D2 domains (26S rRNA) and the intergenic transcribed spacer of a new yeast species with affinities to the genus Cyberlindnera and their evolution. Both regions are not homogenized, failing the prediction of concerted evolution. Phylogenetic network analysis of cloned sequences revealed that Cyberlindnera sp. rDNAs are diverse and evolved by reticulation rather than by bifurcating tree evolution model. Predicted rRNA secondary structures also confirmed structural differences, except for some conserved hairpin loops. We hypothesize that some rDNA is inactive within this species and evolves by birth-and-death rather than concerted evolution. Our findings propel further investigation into the evolution of rDNA genes in yeasts.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9676026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Yca1 metacaspase: diverse functions determine how yeast live and let die.","authors":"Darren K Lam, Gavin Sherlock","doi":"10.1093/femsyr/foad022","DOIUrl":"10.1093/femsyr/foad022","url":null,"abstract":"<p><p>The Yca1 metacaspase was discovered due to its role in the regulation of apoptosis in Saccharomyces cerevisiae. However, the mechanisms that drive apoptosis in yeast remain poorly understood. Additionally, Yca1 and other metacaspase proteins have recently been recognized for their involvement in other cellular processes, including cellular proteostasis and cell cycle regulation. In this minireview, we outline recent findings on Yca1 that will enable the further study of metacaspase multifunctionality and novel apoptosis pathways in yeast and other nonmetazoans. In addition, we discuss advancements in high-throughput screening technologies that can be applied to answer complex questions surrounding the apoptotic and nonapoptotic functions of metacaspase proteins across a diverse range of species.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9984460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Vicente, Niina Kelanne, Lydia Rodrigo-Burgos, Eva Navascués, Fernando Calderón, Antonio Santos, Domingo Marquina, Baoru Yang, Santiago Benito
{"title":"Influence of different Lachancea thermotolerans strains in the wine profile in the era of climate challenge.","authors":"Javier Vicente, Niina Kelanne, Lydia Rodrigo-Burgos, Eva Navascués, Fernando Calderón, Antonio Santos, Domingo Marquina, Baoru Yang, Santiago Benito","doi":"10.1093/femsyr/foac062","DOIUrl":"https://doi.org/10.1093/femsyr/foac062","url":null,"abstract":"<p><p>The study performed sequential fermentations of red grape juice using several strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Due to the new conditions imposed by climate change, wine acidity must be affected as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real alternatives to soften the impact of climate change in winemaking. The L. thermotolerans strains included three commercially available strains and two wine-related natural isolates. L. thermotolerans showed significant statistical differences in basic chemical parameters such as lactic acid, malic acid, or ethanol concentrations as well as in the volatile profile. S. cerevisiae clearly produced some volatile compounds in higher amounts than the studied L. thermotolerans strains while others showed the opposite effect. Sequential fermentations involving any of the studied strains of L. thermotolerans with S. cerevisiae showed an increased volatile profile compared to the S. ceresisiae single fermentation, highlighting the synergic effect between the studied species.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10758485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}