分裂标记介导的基因组编辑提高了CTG分支酵母假丝酵母中间介质的同源重组频率。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kameshwara V R Peri, Fábio Faria-Oliveira, Adam Larsson, Alexander Plovie, Nicolas Papon, Cecilia Geijer
{"title":"分裂标记介导的基因组编辑提高了CTG分支酵母假丝酵母中间介质的同源重组频率。","authors":"Kameshwara V R Peri,&nbsp;Fábio Faria-Oliveira,&nbsp;Adam Larsson,&nbsp;Alexander Plovie,&nbsp;Nicolas Papon,&nbsp;Cecilia Geijer","doi":"10.1093/femsyr/foad016","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-editing toolboxes are essential for the exploration and exploitation of nonconventional yeast species as cell factories, as they facilitate both genome studies and metabolic engineering. The nonconventional yeast Candida intermedia is a biotechnologically interesting species due to its capacity to convert a wide range of carbon sources, including xylose and lactose found in forestry and dairy industry waste and side-streams, into added-value products. However, possibilities of genetic manipulation have so far been limited due to lack of molecular tools for this species. We describe here the development of a genome editing method for C. intermedia, based on electroporation and gene deletion cassettes containing the Candida albicans NAT1 dominant selection marker flanked by 1000 base pair sequences homologous to the target loci. Linear deletion cassettes targeting the ADE2 gene originally resulted in <1% targeting efficiencies, suggesting that C. intermedia mainly uses nonhomologous end joining for integration of foreign DNA fragments. By developing a split-marker based deletion technique for C. intermedia, we successfully improved the homologous recombination rates, achieving targeting efficiencies up to 70%. For marker-less deletions, we also employed the split-marker cassette in combination with a recombinase system, which enabled the construction of double deletion mutants via marker recycling. Overall, the split-marker technique proved to be a quick and reliable method for generating gene deletions in C. intermedia, which opens the possibility to uncover and enhance its cell factory potential.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035504/pdf/","citationCount":"1","resultStr":"{\"title\":\"Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia.\",\"authors\":\"Kameshwara V R Peri,&nbsp;Fábio Faria-Oliveira,&nbsp;Adam Larsson,&nbsp;Alexander Plovie,&nbsp;Nicolas Papon,&nbsp;Cecilia Geijer\",\"doi\":\"10.1093/femsyr/foad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-editing toolboxes are essential for the exploration and exploitation of nonconventional yeast species as cell factories, as they facilitate both genome studies and metabolic engineering. The nonconventional yeast Candida intermedia is a biotechnologically interesting species due to its capacity to convert a wide range of carbon sources, including xylose and lactose found in forestry and dairy industry waste and side-streams, into added-value products. However, possibilities of genetic manipulation have so far been limited due to lack of molecular tools for this species. We describe here the development of a genome editing method for C. intermedia, based on electroporation and gene deletion cassettes containing the Candida albicans NAT1 dominant selection marker flanked by 1000 base pair sequences homologous to the target loci. Linear deletion cassettes targeting the ADE2 gene originally resulted in <1% targeting efficiencies, suggesting that C. intermedia mainly uses nonhomologous end joining for integration of foreign DNA fragments. By developing a split-marker based deletion technique for C. intermedia, we successfully improved the homologous recombination rates, achieving targeting efficiencies up to 70%. For marker-less deletions, we also employed the split-marker cassette in combination with a recombinase system, which enabled the construction of double deletion mutants via marker recycling. Overall, the split-marker technique proved to be a quick and reliable method for generating gene deletions in C. intermedia, which opens the possibility to uncover and enhance its cell factory potential.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035504/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

基因组编辑工具箱对于探索和利用非传统酵母物种作为细胞工厂至关重要,因为它们促进了基因组研究和代谢工程。非传统酵母念珠菌中间体是一种生物技术上有趣的物种,因为它能够将多种碳源(包括林业和乳制品工业废物和侧流中的木糖和乳糖)转化为增值产品。然而,到目前为止,由于缺乏针对该物种的分子工具,基因操作的可能性受到限制。我们在此描述了一种基于含有白色念珠菌NAT1显性选择标记的电穿孔和基因缺失磁带的中间媒介念珠菌基因组编辑方法的发展,该磁带的两侧是与目标位点同源的1000个碱基对序列。针对ADE2基因的线性缺失磁带最初导致
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia.

Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia.

Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia.

Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia.

Genome-editing toolboxes are essential for the exploration and exploitation of nonconventional yeast species as cell factories, as they facilitate both genome studies and metabolic engineering. The nonconventional yeast Candida intermedia is a biotechnologically interesting species due to its capacity to convert a wide range of carbon sources, including xylose and lactose found in forestry and dairy industry waste and side-streams, into added-value products. However, possibilities of genetic manipulation have so far been limited due to lack of molecular tools for this species. We describe here the development of a genome editing method for C. intermedia, based on electroporation and gene deletion cassettes containing the Candida albicans NAT1 dominant selection marker flanked by 1000 base pair sequences homologous to the target loci. Linear deletion cassettes targeting the ADE2 gene originally resulted in <1% targeting efficiencies, suggesting that C. intermedia mainly uses nonhomologous end joining for integration of foreign DNA fragments. By developing a split-marker based deletion technique for C. intermedia, we successfully improved the homologous recombination rates, achieving targeting efficiencies up to 70%. For marker-less deletions, we also employed the split-marker cassette in combination with a recombinase system, which enabled the construction of double deletion mutants via marker recycling. Overall, the split-marker technique proved to be a quick and reliable method for generating gene deletions in C. intermedia, which opens the possibility to uncover and enhance its cell factory potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信