Functional analysis of Candida albicans Cdr1 through homologous and heterologous expression studies.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mengcun Zhao, Erwin Lamping, Kyoko Niimi, Masakazu Niimi, Richard D Cannon
{"title":"Functional analysis of Candida albicans Cdr1 through homologous and heterologous expression studies.","authors":"Mengcun Zhao, Erwin Lamping, Kyoko Niimi, Masakazu Niimi, Richard D Cannon","doi":"10.1093/femsyr/foaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Candida albicans Cdr1 is a plasma membrane ATP-binding cassette transporter encoded by CDR1 that was first cloned 30 years ago in Saccharomyces cerevisiae. Increased expression of Cdr1 in C. albicans clinical isolates results in resistance to azole antifungals due to drug efflux from the cells. Knowledge of Cdr1 structure and function could enable the design of Cdr1 inhibitors that overcome efflux-mediated drug resistance. This article reviews the use of expression systems to study Cdr1. Since the discovery of CDR1 in 1995, 123 studies have investigated Cdr1 using either heterologous or homologous expression systems. The majority of studies have employed integrative transformation and expression in S. cerevisiae. We describe a suite of plasmids with a range of useful protein tags for integrative transformation that enable the creation of tandem-gene arrays stably integrated into the S. cerevisiae genome, and a model for Cdr1 transport function. While expression in S. cerevisiae generates a strong phenotype and high yields of Cdr1, it is a nonnative environment and may result in altered structure and function. Membrane lipid composition and architecture affects membrane protein function and a focus on homologous expression in C. albicans may permit a more accurate understanding of Cdr1 structure and function.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Candida albicans Cdr1 is a plasma membrane ATP-binding cassette transporter encoded by CDR1 that was first cloned 30 years ago in Saccharomyces cerevisiae. Increased expression of Cdr1 in C. albicans clinical isolates results in resistance to azole antifungals due to drug efflux from the cells. Knowledge of Cdr1 structure and function could enable the design of Cdr1 inhibitors that overcome efflux-mediated drug resistance. This article reviews the use of expression systems to study Cdr1. Since the discovery of CDR1 in 1995, 123 studies have investigated Cdr1 using either heterologous or homologous expression systems. The majority of studies have employed integrative transformation and expression in S. cerevisiae. We describe a suite of plasmids with a range of useful protein tags for integrative transformation that enable the creation of tandem-gene arrays stably integrated into the S. cerevisiae genome, and a model for Cdr1 transport function. While expression in S. cerevisiae generates a strong phenotype and high yields of Cdr1, it is a nonnative environment and may result in altered structure and function. Membrane lipid composition and architecture affects membrane protein function and a focus on homologous expression in C. albicans may permit a more accurate understanding of Cdr1 structure and function.

通过同源和异源表达研究分析白色念珠菌 Cdr1 的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信