{"title":"Improving cellulosic ethanol production by an engineered yeast consortium displaying a pentafunctional mini-cellulosome.","authors":"Xiaofei Song, Jianze Zhang, Siyu Fu, Ziyi Liu, Yan Chen, Tingheng Zhu","doi":"10.1093/femsyr/foaf022","DOIUrl":null,"url":null,"abstract":"<p><p>As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, when overloaded cellulase genes are expressed in yeast, the metabolic burden on cells may greatly affect cell growth and cellulosic ethanol production. In this study, we developed a yeast consortium system that secretes and assembles five types of cellulases on the yeast cell surface to improve cellulosic ethanol production. This system involves one display strain, which provides the scaffoldin on the surface and several secretion strains that secrete each cellulase. The secreted dockerin-containing enzymes, cellobiohydrolase (CBH), endoglucanase (EG), β-glucosidase (BGL), cellobiose dehydrogenase (CDH), and lytic polysaccharide monooxygenase (LPMO), were randomly assembled to the scaffoldin to generate a pentafunctional mini-cellulosome via cohesion-dockerin interactions. The developed system relieved the metabolic burden placed on the engineered single yeast strain and leveraged the innate metabolic potential of each host. In addition, the enzymes in the consortium acted synergistically and efficiently boosted cellulose degradation and ethanol production. When compared with the conventional system, this consortium system increased the ethanol titers from 2.66 to 4.11 g/l with phosphoric acid swollen cellulose (PASC) as the substrate, an improvement of 55%. With Avicel as the substrate, ethanol titers increased from 1.57 to 3.24 g/l, representing an enhancement of 106%.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, when overloaded cellulase genes are expressed in yeast, the metabolic burden on cells may greatly affect cell growth and cellulosic ethanol production. In this study, we developed a yeast consortium system that secretes and assembles five types of cellulases on the yeast cell surface to improve cellulosic ethanol production. This system involves one display strain, which provides the scaffoldin on the surface and several secretion strains that secrete each cellulase. The secreted dockerin-containing enzymes, cellobiohydrolase (CBH), endoglucanase (EG), β-glucosidase (BGL), cellobiose dehydrogenase (CDH), and lytic polysaccharide monooxygenase (LPMO), were randomly assembled to the scaffoldin to generate a pentafunctional mini-cellulosome via cohesion-dockerin interactions. The developed system relieved the metabolic burden placed on the engineered single yeast strain and leveraged the innate metabolic potential of each host. In addition, the enzymes in the consortium acted synergistically and efficiently boosted cellulose degradation and ethanol production. When compared with the conventional system, this consortium system increased the ethanol titers from 2.66 to 4.11 g/l with phosphoric acid swollen cellulose (PASC) as the substrate, an improvement of 55%. With Avicel as the substrate, ethanol titers increased from 1.57 to 3.24 g/l, representing an enhancement of 106%.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.