Greg Penney, Greg Baker, Andres Valencia, Daniel Gorham
{"title":"A fire safety engineering approach to improving community resilience to the impacts of wildfire","authors":"Greg Penney, Greg Baker, Andres Valencia, Daniel Gorham","doi":"10.1002/fam.3236","DOIUrl":"10.1002/fam.3236","url":null,"abstract":"<p>Each year severe wildfires continue to cause significant destruction resulting in the loss of life, property, critical infrastructure, and the environment. In an effort to increase community preparedness and resilience to wildfire, international jurisdictions have adopted both guiding principles and prescriptive codes that apply to both urban planning and fire engineering design of buildings within the wildland–urban interface. These measures are intended to protect occupants, enhance the survivability of structures from different fire exposure mechanisms, and increase the chances of successful firefighting operations. However, research has identified (i) inconsistent approaches to regulation and governance; (ii) limited research on which urban design and building standards are based; and (iii) misaligned or contradictory urban design and building standards. This not only stifles the use of development proposing suitable performance-based design that could achieve the required outcomes but can increase administrative burdens and development costs without increasing safety. The aim of this current study is to contribute to addressing identified shortfalls by identifying and distilling the last 23 years of research in the field related to (i) the development of evidence-based performance requirements, and (ii) the application of effective governance arrangements in order to enhance urban design and wildfire engineering practices. These aims are achieved through a systematic literature review. Ultimately, however, of the 608 initial articles captured in the identification phase of the SLR, not a single article provided insight into the most effective regulatory or governance mechanism, and only three provided criteria suitable for adoption as a performance requirement. While the aims of this study were only partially achieved, it does provide a foundation for the field by way of identifying and distilling the current state of practice.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"835-846"},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The National Electrical Safety Code, powerline clearances, and wildfires","authors":"Vytenis Babrauskas","doi":"10.1002/fam.3237","DOIUrl":"10.1002/fam.3237","url":null,"abstract":"<p>The provisions of the National Electrical Safety Code (NESC) have a long, but undocumented history. They are the primary means by which Public Utilities Commission agencies in various States in the United States enforce requirements for electrical clearances pertinent to high-voltage powerlines. Examination of the NESC provisions for clearances between grounded guy wires and distribution phase conductors in the context of the Woolsey Fire indicates a comprehensive lack of realism in the Code provisions. While they may be entirely sufficient to prevent sparkover under normal operating conditions, they are wholly insufficient to cope with even modest adverse events. The profession should consider explicitly assessing factors beyond sparkover that affect the adequacy of clearance requirements. The provisions of the NESC (and California's parallel General Order No. 95) should be systematically reexamined in order to ensure that safety regulations can cope with adverse events that are serious, but not extreme. Since the vast majority of the electrical power network is aging and not new construction, a scheme should be developed to establish priorities for upgrading existing facilities at the highest risk of failure.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"517-522"},"PeriodicalIF":2.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiuni Fu, Haoze Chen, Sven Brunkhorst, Jochen Zehfuß, Bohumil Kasal, Libo Yan
{"title":"Thermal behavior of adhesively bonded timber-concrete composite slabs subjected to standard fire exposure","authors":"Qiuni Fu, Haoze Chen, Sven Brunkhorst, Jochen Zehfuß, Bohumil Kasal, Libo Yan","doi":"10.1002/fam.3235","DOIUrl":"https://doi.org/10.1002/fam.3235","url":null,"abstract":"<p>Fire tests were performed for the first time on adhesively bonded timber-concrete composite slabs. The two medium-scale (1.8 × 1.25 m) slabs were produced by gluing an 80-mm thick three-layer cross-laminated timber (CLT) board to a 50 mm thick prefabricated reinforced concrete (RC) slab with epoxy and polyurethane (PUR) adhesives, respectively. The behavior of the composite slabs under elevated temperature was monitored by (1) observing the burning behavior of the used CLT, for example, charring and delamination and (2) measuring the temperature development at different locations of the CLT slabs, in the adhesive bond between concrete and timber boards, and in RC slabs. It was found that employing a one-dimensional charring model for pure softwood, as prescribed by Eurocode 5-1-2, underestimated the charring depth of CLT due to the delamination effects. Measurements revealed that the average charring rates in the middle layer of CLT panels were approximately 0.65 mm/min, suggesting that the presence of concrete does not significantly affect the thermal behavior of the CLT panel. Delamination within the CLT was observed when its adhesive temperature was around 230°C. It was followed by the free-fall of delaminated wood plies, which progressed slowly and lasted until the end of the test. At 90 min into the test, the temperatures of epoxy at the nine locations ranged between 55°C and 130°, while that of PUR between 60°C and 100°. The adhesive between concrete and CLT could lose stiffness significantly along the rising of temperature after surpassing of glass transition temperature (58°C for epoxy and 23°C for PUR in this study). The results indicated a high risk of weakening the composite action between the concrete slab and timber board. The measured temperatures of steel rebar were lower than 50°C. However, the concrete temperature reached about 120°C and the concrete cracked due to the distinct thermal expansions between concrete and timber and the rigid constraint of adhesive bond.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 8","pages":"824-837"},"PeriodicalIF":2.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monique Vital de Lima, Ana Lucia de Souza Ventapane, Simone Pereira da Silva Ribeiro, Alexandre Landesmann
{"title":"Eco-friendly flame-retardant based on sap from banana plant pseudostems","authors":"Monique Vital de Lima, Ana Lucia de Souza Ventapane, Simone Pereira da Silva Ribeiro, Alexandre Landesmann","doi":"10.1002/fam.3234","DOIUrl":"10.1002/fam.3234","url":null,"abstract":"<p>Society's need for safe flame-retardant technologies in passive fire protection is undeniable. To address this concern, this paper presents an experimental investigation of the fire-retardant properties of slash pine wood treated with banana plant pseudostem sap, obtained from a cultivated banana plant variety widely grown in Brazil. The natural sap extract was characterized through X-Ray Fluorescence spectrometry and Fourier Transform Infrared Spectroscopy techniques, revealing the presence of key components, including water, potassium chloride, sodium chloride, sodium silicate, calcium phosphate, sodium phosphate, lignin and tannins. The authors explored different treatment parameters, including various sap impregnation times, number of impregnations and use of natural versus various levels of concentrated sap. First, a horizontal burning test, similar test to UL 94 HB, was used to obtain an initial assessment of the suitability of sap as a flame retardant for slash pine wood. Subsequently, the Mass Loss Calorimeter equipment with thermopile attachment described in ISO 13927:2015 was used to measure various heat release rate parameters. The findings suggest that reducing the water content in sap and increasing the number of repeat treatments results in a more effective treatment for slash pine wood. More specifically, the results indicate that the most efficient treatment involves three impregnations with high-concentration (1/10 volume reduction) sap. Future work to improve the efficacy of the concentrated sap impregnation process could explore the use of pressure treatment instead of soaking.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 8","pages":"811-823"},"PeriodicalIF":2.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew J. DiDomizio, Mark B. McKinnon, Grayson Bellamy
{"title":"Measurement of thermal conductivity of thermally reactive materials for use in pyrolysis models","authors":"Matthew J. DiDomizio, Mark B. McKinnon, Grayson Bellamy","doi":"10.1002/fam.3233","DOIUrl":"10.1002/fam.3233","url":null,"abstract":"<p>Pyrolysis models are used in the fire science field to simulate the thermal decomposition of materials. These models require knowledge of the kinetic and thermodynamic parameters of an assumed reaction mechanism, and the thermophysical properties of the virgin material and product species. Standard test methods exist for measuring the thermal conductivity of nonreactive materials, but to date no suitable method exists that is compatible with contemporary pyrolysis models and is applicable to thermally reactive materials. In the present study, a modified methodology was presented and evaluated to address this need. The methodology involves a preliminary assessment of thermal stability, followed by a series of tests including: thermogravimetric analysis, differential scanning calorimetry, and laser flash analysis. Once a reaction mechanism has been identified, gram-scale samples of the virgin and stable product species are isolated and independent measurements of thermal conductivity of those species are obtained. The methodology was applied to eucalyptus fiber hardboard, for which a complete set of property data for pyrolysis modeling was obtained. A pyrolysis experiment was then conducted, and that experiment was simulated using a pyrolysis model parameterized with the measured property data. Model predictions of the mass loss rate and temperature rise of a hardboard sample exposed to radiant heat flux of 35 and 60 kW m<sup>−2</sup> were found to be a good match to measurements. These results demonstrate the suitability of the property data, the pyrolysis model, and the utility of this approach. This work will serve as a basis for property determination in future pyrolysis studies.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 8","pages":"796-810"},"PeriodicalIF":2.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flame retardant and smoke suppression properties of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide derivative/zinc molybdate sepiolite modified acrylate emulsion","authors":"Yong Liu, Tao Zhang, Xin-xi Geng, Xiang Liao","doi":"10.1002/fam.3231","DOIUrl":"10.1002/fam.3231","url":null,"abstract":"<p>Acrylate emulsion is widely used in various industrial fields and is an important polymer emulsion. However, the high flammability limits its application. Besides, acrylate emulsion generally releases a large amount of smoke during combustion. To improve the fire resistance and smoke suppression properties of acrylate emulsions, methyl methacrylate-butyl acrylate copolymer P(MMA-BA)/DOPO-based polymerizable monomer (HEPO)/zinc molybdate sepiolite (Mo-Sep) composite emulsion was prepared by emulsion polymerization, and the effect of Mo-Sep content on the flame-retardant performance, thermal stability, and smoke suppression performance of the composite emulsion was studied. Through microcalorimeter and smoke density meter tests, it was found that the heat release rate (HRR) of the composite emulsion, added with 30% HEPO/3% Mo-Sep, was reduced by 63.3%, and the peak heat release rate (PHRR) was reduced by 72.1%. The total heat release (THR) is reduced by 49.0%, while the peak-specific optical density is reduced by 48.0%. It shows that the composite emulsion has excellent flame-retardant and smoke suppression properties compared to pure MAA-BA emulsion. In addition, scanning electron microscope (SEM) images show that the addition of Mo-Sep increases the density of carbon residue. This composite emulsion may have potential application scenarios in the field of flame-retardant coatings.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 8","pages":"789-795"},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution characteristics of radiant heat flux on tank surfaces exposed to wildland fires","authors":"Ziwei Wang, Kuibin Zhou","doi":"10.1002/fam.3232","DOIUrl":"10.1002/fam.3232","url":null,"abstract":"<p>The expansion of wildland-urban interface tends to expose fuel tanks to wildland fires, the frequency and intensity of which have increased in recent years due to climate change and global warming. This study aims to examine the distribution of radiant heat flux on a tank surface exposed to a wildland fire front, with a particular focus on extreme wildland fires. A theoretical framework is proposed, which consists of a flame length correlation, a thermal radiation model, and a correlation of time to failure, to calculate the radiant heat flux received by the tank surface and the potential for tank failure. The horizontal and circumferential distribution characteristics of the radiant heat flux are intensively discussed, in terms of the heat flux profile, heating area, total heat, time to failure versus the fireline intensity, fireline width, spacing, and tank volume. In particular, extreme wildland fires, characterized by large fireline intensities, could potentially destroy the tank within the safety spacing mandated by the current regulations. Therefore, a comparison between the time to failure and the radiant heating duration is suggested to ascertain the necessary safety spacing. The uncertainties in model calculations are also addressed, which arise from the use of different flame length correlations and flame radiative fractions.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"559-574"},"PeriodicalIF":2.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Syringaldehyde-DOPO derivative for enhancing flame retardancy and mechanical properties of epoxy resin","authors":"Zhengpeng Chen, Xin He, Zhengshuai Cao, Yunfan Li, Denglong Chen, Zhiwang Yang, Ziqiang Lei","doi":"10.1002/fam.3228","DOIUrl":"10.1002/fam.3228","url":null,"abstract":"<p>With the wide application of epoxy resins in adhesives, electronic packaging materials, and aerospace fields, it is necessary to prepare high-performance flame-retardant epoxy resins to reduce the fire risk caused by their flammability. In this study, the rigid structure intermediate Schiff base (DMDA-SH) was synthesized by condensation reaction of syringaldehyde (SH) with O-Tolidine (DMDA). Then, DMDA-SH-DOPO, a novel P/N-structured biobased flame-retardant curing agent, was synthesized by addition reaction with 9,10-dihydro-9-oxaza-10-phosphame-10-oxide (DOPO) and was applied to the preparation of intrinsic flame-retardant epoxy resin. As expected, DMDA-SH-DOPO has good flame-retardant properties due to the synergistic action of N/P elements. Epoxy resin with only 2.5% DMDA-SH-DOPO (P = 0.16%) can pass the UL-94 V-0 test. Compared with DGEBA/DDM, DMDA-SH-DOPO-7.5's (P = 0.49%) peak heat release rate was reduced by 48.4% and the limiting oxygen index (LOI) reached 27%, making it a flame-retardant material. From the point of view of carbonaceous residue performance, the expansion height of carbon residue after DMDA-SH-DOPO-7.5 combustion is significantly increased, and the amount of carbon residue at 800°C is increased by 36.4%. In addition, appropriate DMDA-SH-DOPO can effectively improve the bending property of epoxy resin. This study provides a new idea for preparing renewable high-performance intrinsic flame-retardant epoxy resin.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 7","pages":"752-764"},"PeriodicalIF":2.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weifeng Wang, Di He, Xuanchong Zhao, Xiaohan Ji, Fangzhi Zhang, Lin Wang, Ze Yang
{"title":"Investigation into the overcurrent failure and combustion characteristics of copper-clad aluminum conductors","authors":"Weifeng Wang, Di He, Xuanchong Zhao, Xiaohan Ji, Fangzhi Zhang, Lin Wang, Ze Yang","doi":"10.1002/fam.3230","DOIUrl":"10.1002/fam.3230","url":null,"abstract":"<p>Electrical fires perennially rank first in fire occurrence types, with conductor overcurrent being one of the main inducements. This topic draws significant attention from scientific researchers and fire investigators. To understand the overcurrent fault and combustion characteristics of copper-clad aluminum conductors, this paper examines 2.5 mm<sup>2</sup> copper-clad aluminum conductors that meet national standards, investigating morphological changes, temperature variations in the core and insulation layer, and flame propagation patterns under overcurrent conditions. Experiments using an electrical fault simulation device were conducted to study overcurrent failures of copper-clad aluminum conductors under 52.5–105 A conditions. The results indicate that when the current exceeds 67.5 A, the conductor undergoes a series of changes during energization, including smoking, expanding, carbonizing, burning, and breaking; at 52.5 A, the insulation layer reaches thermal equilibrium at 150 s without combustion; for currents between 60–67.5 A, wire core temperature variations can be divided into three stages; at 75 A, the insulation layer reaches thermal equilibrium 10s before breaking; currents above 82.5 A see a sharp increase in temperature in both the core and insulation layer before the conductor breaks; above 97.5 A, the conductor first breaks and then burns. The research results have significant theoretical value in improving the scientific rigor of fire accident investigations and forensic evidence examinations.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 7","pages":"778-785"},"PeriodicalIF":2.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shivangi Dwivedi, Richa Srivastava, Prasun Kumar Roy
{"title":"Exploring the potential of dual-metallized PET towards improving the efficiency of outermost reflective layer in fire proximity clothing","authors":"Shivangi Dwivedi, Richa Srivastava, Prasun Kumar Roy","doi":"10.1002/fam.3229","DOIUrl":"10.1002/fam.3229","url":null,"abstract":"<p>The outermost layer of a fire proximity suit needs to conform to a strict requirement of radiant protection performance (RPP) ≥ 20s, which is indicative of its ability of offering a protection for at least 20s duration from second degree burn upon radiant heat exposure (84 kW/m<sup>2</sup>). Typically, this layer is fabricated by laminating a single-side metallized PET (SMPET) layer with glass fabric. However, upon erosion of the deposited metal, this laminate is rendered unsuitable due to loss of reflectivity. Here, we explore the possibility of replacing the SMPET with its dual-metallized analogue (DMPET) and determine the effect of increasing the optical density (OD) on the adherence and protection level. Metallized films with OD varying from 2.2 to 4.8 were laminated with glass fabrics of twill, satin and plain weave pattern using a silicone adhesive. The peel adhesion strength of laminates prepared using DMPET was found to be higher (1.01 ± 0.03 N/mm), as compared to SMPET (0.63 ± 0.03 N/mm) and the resulting films did not undergo delamination during flexing. Laminates prepared from satin woven glass fabric exhibited lowest flexural rigidity followed by twill and plain woven glass fabric. Protection offered by the laminate from convective heat was quantified in terms of the thermal protective performance (TPP), and the abraded laminate prepared using DMPET (OD-4.8) was found to meet all the mandatory requirements of proximity clothing, offering an RPP of 27 s and a TPP of 62 cal/cm<sup>2</sup> s. In comparison, SMPET laminates exhibited lower level of adhesion and offered an RPP of only 7.5 s.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 7","pages":"765-777"},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}