用于提高环氧树脂阻燃性和机械性能的丁缩醛-DOPO 衍生物

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhengpeng Chen, Xin He, Zhengshuai Cao, Yunfan Li, Denglong Chen, Zhiwang Yang, Ziqiang Lei
{"title":"用于提高环氧树脂阻燃性和机械性能的丁缩醛-DOPO 衍生物","authors":"Zhengpeng Chen,&nbsp;Xin He,&nbsp;Zhengshuai Cao,&nbsp;Yunfan Li,&nbsp;Denglong Chen,&nbsp;Zhiwang Yang,&nbsp;Ziqiang Lei","doi":"10.1002/fam.3228","DOIUrl":null,"url":null,"abstract":"<p>With the wide application of epoxy resins in adhesives, electronic packaging materials, and aerospace fields, it is necessary to prepare high-performance flame-retardant epoxy resins to reduce the fire risk caused by their flammability. In this study, the rigid structure intermediate Schiff base (DMDA-SH) was synthesized by condensation reaction of syringaldehyde (SH) with O-Tolidine (DMDA). Then, DMDA-SH-DOPO, a novel P/N-structured biobased flame-retardant curing agent, was synthesized by addition reaction with 9,10-dihydro-9-oxaza-10-phosphame-10-oxide (DOPO) and was applied to the preparation of intrinsic flame-retardant epoxy resin. As expected, DMDA-SH-DOPO has good flame-retardant properties due to the synergistic action of N/P elements. Epoxy resin with only 2.5% DMDA-SH-DOPO (P = 0.16%) can pass the UL-94 V-0 test. Compared with DGEBA/DDM, DMDA-SH-DOPO-7.5's (P = 0.49%) peak heat release rate was reduced by 48.4% and the limiting oxygen index (LOI) reached 27%, making it a flame-retardant material. From the point of view of carbonaceous residue performance, the expansion height of carbon residue after DMDA-SH-DOPO-7.5 combustion is significantly increased, and the amount of carbon residue at 800°C is increased by 36.4%. In addition, appropriate DMDA-SH-DOPO can effectively improve the bending property of epoxy resin. This study provides a new idea for preparing renewable high-performance intrinsic flame-retardant epoxy resin.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 7","pages":"752-764"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syringaldehyde-DOPO derivative for enhancing flame retardancy and mechanical properties of epoxy resin\",\"authors\":\"Zhengpeng Chen,&nbsp;Xin He,&nbsp;Zhengshuai Cao,&nbsp;Yunfan Li,&nbsp;Denglong Chen,&nbsp;Zhiwang Yang,&nbsp;Ziqiang Lei\",\"doi\":\"10.1002/fam.3228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the wide application of epoxy resins in adhesives, electronic packaging materials, and aerospace fields, it is necessary to prepare high-performance flame-retardant epoxy resins to reduce the fire risk caused by their flammability. In this study, the rigid structure intermediate Schiff base (DMDA-SH) was synthesized by condensation reaction of syringaldehyde (SH) with O-Tolidine (DMDA). Then, DMDA-SH-DOPO, a novel P/N-structured biobased flame-retardant curing agent, was synthesized by addition reaction with 9,10-dihydro-9-oxaza-10-phosphame-10-oxide (DOPO) and was applied to the preparation of intrinsic flame-retardant epoxy resin. As expected, DMDA-SH-DOPO has good flame-retardant properties due to the synergistic action of N/P elements. Epoxy resin with only 2.5% DMDA-SH-DOPO (P = 0.16%) can pass the UL-94 V-0 test. Compared with DGEBA/DDM, DMDA-SH-DOPO-7.5's (P = 0.49%) peak heat release rate was reduced by 48.4% and the limiting oxygen index (LOI) reached 27%, making it a flame-retardant material. From the point of view of carbonaceous residue performance, the expansion height of carbon residue after DMDA-SH-DOPO-7.5 combustion is significantly increased, and the amount of carbon residue at 800°C is increased by 36.4%. In addition, appropriate DMDA-SH-DOPO can effectively improve the bending property of epoxy resin. This study provides a new idea for preparing renewable high-performance intrinsic flame-retardant epoxy resin.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"48 7\",\"pages\":\"752-764\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3228\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3228","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着环氧树脂在粘合剂、电子包装材料和航空航天领域的广泛应用,有必要制备高性能阻燃环氧树脂,以降低其易燃性带来的火灾风险。本研究通过丁香醛(SH)与邻甲苯胺(DMDA)的缩合反应合成了刚性结构中间体席夫碱(DMDA-SH)。然后,通过与 9,10-二氢-9-氧杂-10-磷杂-10-氧化物(DOPO)发生加成反应,合成了新型 P/N 结构生物基阻燃固化剂 DMDA-SH-DOPO,并将其应用于本征阻燃环氧树脂的制备。正如预期的那样,由于 N/P 元素的协同作用,DMDA-SH-DOPO 具有良好的阻燃性能。仅含有 2.5% DMDA-SH-DOPO(P = 0.16%)的环氧树脂就能通过 UL-94 V-0 测试。与 DGEBA/DDM 相比,DMDA-SH-DOPO-7.5(P = 0.49%)的峰值热释放率降低了 48.4%,极限氧指数(LOI)达到 27%,成为一种阻燃材料。从残炭性能来看,DMDA-SH-DOPO-7.5 燃烧后残炭的膨胀高度明显增加,800℃ 时残炭量增加了 36.4%。此外,适当的 DMDA-SH-DOPO 还能有效改善环氧树脂的弯曲性能。该研究为制备可再生高性能本征阻燃环氧树脂提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syringaldehyde-DOPO derivative for enhancing flame retardancy and mechanical properties of epoxy resin

With the wide application of epoxy resins in adhesives, electronic packaging materials, and aerospace fields, it is necessary to prepare high-performance flame-retardant epoxy resins to reduce the fire risk caused by their flammability. In this study, the rigid structure intermediate Schiff base (DMDA-SH) was synthesized by condensation reaction of syringaldehyde (SH) with O-Tolidine (DMDA). Then, DMDA-SH-DOPO, a novel P/N-structured biobased flame-retardant curing agent, was synthesized by addition reaction with 9,10-dihydro-9-oxaza-10-phosphame-10-oxide (DOPO) and was applied to the preparation of intrinsic flame-retardant epoxy resin. As expected, DMDA-SH-DOPO has good flame-retardant properties due to the synergistic action of N/P elements. Epoxy resin with only 2.5% DMDA-SH-DOPO (P = 0.16%) can pass the UL-94 V-0 test. Compared with DGEBA/DDM, DMDA-SH-DOPO-7.5's (P = 0.49%) peak heat release rate was reduced by 48.4% and the limiting oxygen index (LOI) reached 27%, making it a flame-retardant material. From the point of view of carbonaceous residue performance, the expansion height of carbon residue after DMDA-SH-DOPO-7.5 combustion is significantly increased, and the amount of carbon residue at 800°C is increased by 36.4%. In addition, appropriate DMDA-SH-DOPO can effectively improve the bending property of epoxy resin. This study provides a new idea for preparing renewable high-performance intrinsic flame-retardant epoxy resin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信