{"title":"Propagation of Smouldering in Wood Dust Deposits Ignited by Embedded Hot Bodies","authors":"Chang Li, Jinglin Zhang, Haoran Zhao, Chunmiao Yuan, Zhenguo Du, Zheren Dong, Paul Amyotte, Zenghui Zhao, Ronghua Li, Weitong Liang, Zhiqun Xie","doi":"10.1002/fam.3283","DOIUrl":"https://doi.org/10.1002/fam.3283","url":null,"abstract":"<div>\u0000 \u0000 <p>Combustible dust poses a hazard to industry in two ways, i.e., reactive as a cloud or reactive as a pile. This paper deals with the smouldering behaviour of wood dust deposits initiated by hot bodies. Effects of embedded depth and airflow condition are investigated. Two sizes of wood dust are selected as test samples, namely wood powder and wood chip. The results indicate that under the same hot bodies embedded depth, wood chip combustion propagates faster than wood powder in general due to its unique flocculent structure. Due to the increased insulation effect of the wood dust layer, the temperature at the same measuring point is higher than that of the wood chip layer. In addition, under airflow conditions, the smouldering propagation of wood deposits is significantly higher than that without airflow (2.42 and 4.34 m/s) for both wood powder and wood chip samples. However, the deposited wood powder has a lower minimum ignition temperature than wood chip. Accumulated wood dust in considered to have a greater fire risk in powder form.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"347-356"},"PeriodicalIF":2.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan-Gen Lu, Bo Hao, Geng Chen, Cai-Xian Xu, Li Zhang
{"title":"Analysis of Burning Rate Variation of Tungsten Delay Composition Close to Zero Oxygen Balance","authors":"Yuan-Gen Lu, Bo Hao, Geng Chen, Cai-Xian Xu, Li Zhang","doi":"10.1002/fam.3279","DOIUrl":"https://doi.org/10.1002/fam.3279","url":null,"abstract":"<div>\u0000 \u0000 <p>Tungsten delay compositions are widely utilized in ammunition, small detonators, and other devices. In this study, we first explored the changes in the burning rate of micron-sized tungsten delay compositions (W/BaCrO<sub>4</sub>/KClO<sub>4</sub>) when achieving zero oxygen balance under different material tube walls. Subsequently, SiO<sub>2</sub>, CuO, BN, and shellac were added to the tungsten delay composition to investigate the burning rate variations of different samples in aluminum tubes. The experimental results reveal that the combustion rate of the tungsten delay composition decreases with an increase in the thermal conductivity of the tube wall. The content of BN exhibits a linear relationship with the combustion rate of the tungsten delay composition, the combustion rate of the tungsten delay composition decreases with the increase of the mass percentage of BN. A small amount of SiO<sub>2</sub>, CuO, and shellac accelerates the combustion rate of the tungsten delay composition, but the combustion rate decreases as the content of these additives increases. The conclusion of this study can provide a wider range of delay times for delay devices with significant spatial limitations.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"320-328"},"PeriodicalIF":2.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sruthi Sunder, Maria Jauregui Rozo, Sneha Inasu, Dietmar Meinel, Bernhard Schartel, Holger Ruckdäschel
{"title":"Effect of Ammonium Polyphosphate/Silicate Content on the Postfire Mechanics of Epoxy Glass-Fiber Composites Using Facile Chocolate Bar-Inspired Structures","authors":"Sruthi Sunder, Maria Jauregui Rozo, Sneha Inasu, Dietmar Meinel, Bernhard Schartel, Holger Ruckdäschel","doi":"10.1002/fam.3280","DOIUrl":"https://doi.org/10.1002/fam.3280","url":null,"abstract":"<p>This study investigates the postfire mechanical properties of epoxy glass-fiber reinforced composites (EP GFRCs) using increasing concentrations of ammonium polyphosphate (APP) and inorganic silicate (InSi) to modify the char and fire residue. A facile chocolate bar-inspired structure was introduced for fire exposure and subsequent flexural testing of the GFRCs. The resin matrix used here was a diglycidyl ether of bisphenol-A (DGEBA) resin, cured with dicyandiamide (DICY), and accelerated by Urone. The microstructures of the degraded composites after three-point bending tests, were evaluated using scanning electron microscopy (SEM) and x-ray computed tomography (XCT) imaging. A previous study showed that increasing the APP and InSi content significantly enhanced flame retardancy, via improved char formation under fire conditions. However, flexural properties and fire resistance were adversely affected after fire exposure, highlighting a trade-off effect. Fiber breakage and delamination of the composites increased upon failure with increasing APP + InSi content in the composite due to unconsolidated char. The experimental values for the postfire flexural mechanics were in good agreement with the two-layer model proposed in literature. This paper presents a preliminary basis for postfire mechanical testing of epoxy composites for use in fire-safe structures, using a combination of standardized testing norms.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"329-346"},"PeriodicalIF":2.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinglin Zhang, Zhenguo Du, Qi Yuan, Chang Li, Shixun Ding, Gang Li, Chunmiao Yuan
{"title":"Fire Hazard of Fiber Dust Layers With Different Widths and Inclination Angles Exposed to Simulated Hotspots","authors":"Jinglin Zhang, Zhenguo Du, Qi Yuan, Chang Li, Shixun Ding, Gang Li, Chunmiao Yuan","doi":"10.1002/fam.3277","DOIUrl":"https://doi.org/10.1002/fam.3277","url":null,"abstract":"<div>\u0000 \u0000 <p>Fiber dust's flocculent structure often leads to underestimation of its potential for fire and explosion. In order to compare the fire hazards of fiber dust layers with different widths and inclination angles exposed to simulated hotspots with traditional powdered dust layers. The current research systematically studied the flame spread characteristics of flax, paper scraps, and wood dust with widths of 20, 30, 40, 50, and 60 mm at inclination angles of 0°, −10°, −20°, −30° and −40°. Studies have found that at different widths and inclination angles, flax dust has a higher flame spread velocity than wood powder, and even metal powder. Under the coupling effect of the width and inclination angle of the countercurrent flame, the inclination angle has a significant impact on the flame spread velocity of the countercurrent flame. Flax fiber dust has a significantly higher fire hazard than conventional dust. These findings should be taken into account in the industrial processes of handling flax fiber dust.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"309-319"},"PeriodicalIF":2.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim J. Aspinall, Emmajane L. Erskine, Kevin A. Denham, Derek C. Taylor, Rory M. Hadden
{"title":"Laboratory-Scale Assessment of Carbon-Epoxy Structural U-Channels Exposed to Flange Heating","authors":"Tim J. Aspinall, Emmajane L. Erskine, Kevin A. Denham, Derek C. Taylor, Rory M. Hadden","doi":"10.1002/fam.3262","DOIUrl":"https://doi.org/10.1002/fam.3262","url":null,"abstract":"<p>This study investigates the combined thermal and mechanical response of pre-loaded woven carbon-epoxy U-channels subjected to radiant heating conditions similar to those experienced by aircraft structures in the event of a fire. A custom-built laboratory scale test rig was used to combine the mechanical loads and thermal boundary conditions. The main experimental aim was to measure failure times, failure modes, displacement and temperature distribution of the U-channels. The results show that the U-channels undergo multiple phases of decomposition when exposed to heat. These phases include physico-chemical changes such as bubble formation, visible charring, and epoxy resin pyrolysis. Additionally, the U-channels experience mechanical degradation through thermal-induced delamination and torsional deformation, causing the flange furthest from the heat source to buckle. The rate of decomposition and loss of load-bearing capacity are directly proportional to heat flux, with higher heat fluxes accelerating these processes. Analysis of displacement data reveals that higher heat fluxes correlate with lower displacement variability over time for U-channels under identical thermal conditions. Temperature measurements indicate that higher heat fluxes result in higher temperatures but lower temperature gradients, directly influencing failure times and modes. Consequently, higher temperatures lead to shorter failure times, while lower temperatures extend failure times. The findings from this study will provide valuable knowledge to inform optimised approaches, especially in the domain of aircraft structural fire safety.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"215-232"},"PeriodicalIF":2.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Deng, Jiajie Cui, Ridho Surahman, Min Tu, Yi Wang
{"title":"Experimental and Analytical Study on Heat Transfer of Concrete With Different Degrees of Saturation Under Elevated Temperatures","authors":"Jun Deng, Jiajie Cui, Ridho Surahman, Min Tu, Yi Wang","doi":"10.1002/fam.3270","DOIUrl":"https://doi.org/10.1002/fam.3270","url":null,"abstract":"<div>\u0000 \u0000 <p>In hygrothermal conditions, structural safety is a major concern because of the occurrence of explosive spalling when concrete structures are exposed to fire. To evaluate the fire damage of concrete accurately, the effect of moisture content and water-to-cement ratio on the thermal conductivity of concrete under elevated temperatures was studied experimentally and analytically in this paper. The experimental results showed that the temperature fields had a significant change among the cases with different water-to-cement ratios while the changes between dried and saturated cases were marginal. The temperature changes of dried samples were slightly swifter than those of saturated one. It indicates that compared with mixture proportions, concrete saturation degree has an insignificant influence on concrete heat transfer in the procedure of fire exposure. Based on the test and analytical results, an analytical model for heat transfer analysis of fire-damaged concrete under hot and humid environments was proposed and showed good agreement with the test results.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"269-279"},"PeriodicalIF":2.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Studies of the Effects of Recoating on Fire Protection Properties of Old and New Layers of Intumescent Coatings for Steel Elements","authors":"L. L. Wang, X. Zhu, T. J. Liu","doi":"10.1002/fam.3271","DOIUrl":"https://doi.org/10.1002/fam.3271","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents the results of experimental studies investigating the effects of recoating on fire protection properties of composite layers of intumescent coatings for steel elements. Intumescent coatings, both with and without topcoats, were applied to steel plates. The samples were subjected to different cycles of hydrothermal aging before recoating. The composite layers of the existing and new coatings were then tested under fire. Comparisons of the morphological structures of the carbonaceous char revealed that the existing coating had little effect on the expansion properties of the new coating. However, the new coating reduced the expansion ratio of the existing coating. The thermal resistance of the existing coating decreased with the increasing thickness of the new coating. For specimens with a new coating 1.0 mm thick, the thermal resistance of the existing coating, after even moderate environmental exposure, was < 20% of the total and can be ignored. Contributions from the existing coating may be considered when specifying the thickness of the new coating if the new coating thickness is small and the existing coating is subjected to moderate environmental aging. Recoating with a different type of intumescent coating from the existing one appeared to provide better fire protection performance than using the same type.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"280-296"},"PeriodicalIF":2.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhichao Zhu, Weiran Song, Xin Yue, Yihan Lyu, Ji Wang
{"title":"Postfire Estimation of Heating Temperatures Experienced by Fire Retardant Coatings Using Smartphone Videos and Machine Learning","authors":"Zhichao Zhu, Weiran Song, Xin Yue, Yihan Lyu, Ji Wang","doi":"10.1002/fam.3268","DOIUrl":"https://doi.org/10.1002/fam.3268","url":null,"abstract":"<p>Accurate estimation of heating temperatures experienced by fire retardant coatings (FRCs) is crucial in identifying the ignition source during fire investigations. While traditional methods, such as spectroscopy, effectively capture the compositional changes in FRC at various heating temperatures, they are typically bulky, costly, and unsuitable for rapid field analysis. This study proposes the use of smartphone and machine learning to predict the heating temperatures of FRC. A smartphone is employed to capture short videos of FRC samples illuminated by its color-changing screen. Video frames are then decomposed into color images and converted into spectral data for further processing. Linear and nonlinear regression models are applied to identify key variables and enhance predictive accuracy. The performance of smartphone-based temperature estimation is compared to that of hyperspectral imaging and laser-induced breakdown spectroscopy. In the test phase, the coefficient of determination for smartphone-based estimation ranges from 0.946 to 0.962, often surpassing that of benchmark methods. These results indicate that smartphones can provide a low-cost, effective means for estimating heating temperatures of FRC in fire investigations.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"249-256"},"PeriodicalIF":2.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of Multifunctional Cotton Fabric as the Flame Retardant/Crease Proof/Microbial Resistant Blended With Green Synthesised TiO2 Nanoparticles Coatings","authors":"Karan Kapoor, Sachin Kumar Godara, Veer Singh, Anupreet Kaur","doi":"10.1002/fam.3272","DOIUrl":"https://doi.org/10.1002/fam.3272","url":null,"abstract":"<div>\u0000 \u0000 <p>In this work, green synthesised TiO<sub>2</sub> nanoparticles' coating was used to improve the fire safety and antibacterial property of 100% cotton fabric. In the first stage, <i>Aloe vera</i> extract was prepared, and subsequently used in the synthesis of TiO<sub>2</sub> nanoparticles. The average size of these as-synthesised TiO<sub>2</sub> nanoparticles was confirmed to be 16 nm using DLS (dynamic light scattering). Further, XRD (X-ray diffraction) patterns confirmed the successful synthesis of nanoparticles. The vibrational photon of TiO<sub>2</sub> was represented by peaks in the FTIR (Fourier transform infrared spectroscopy) spectrum between 450 and 800 cm<sup>−1</sup>. Subsequently, in an attempt to establish the flame retardant/crease proof/microbial resistant properties of the as-synthesised TiO<sub>2</sub> nanoparticles, the TiO<sub>2</sub> NPs coated cotton fabric was used for the investigations. Based on the investigations, the bending length (measure of fabric stiffness) value of the coated fabric (%) increased from 2.4 cm (uncoated fabric) to 3.71 cm (at 20% TiO<sub>2</sub> coating). Also, the crease recovery angle value increased from 71.8 (uncoated fabric) to 98.6 (20% TiO<sub>2</sub> coating), respectively. A vertical flammability test revealed that the burning time decreased from 13.31 s (0%) to 10.84 s (20%), confirming a fire-retardant trait of green synthesised TiO<sub>2</sub> nanoparticle coated fabric. Additionally, the disc diffusion method confirmed that the treated coated fabrics exhibit antibacterial properties against both gram-positive and gram-negative bacterial cultures: <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. This study provides an environmentally benign route for producing versatile cotton fabric blended with bioinspired TiO<sub>2</sub> NPs possessing improved flame resistance as well as antibacterial attributes.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"297-308"},"PeriodicalIF":2.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakub Šejna, Vojtěch Šálek, Stanislav Šulc, Kamila Cábová, Vít Šmilauer, Slávek Zbirovský, Milan Jahoda, František Wald
{"title":"Fire Protection of Steel Beam by OSB Claddings—A Fire Experiment and Numerical Models","authors":"Jakub Šejna, Vojtěch Šálek, Stanislav Šulc, Kamila Cábová, Vít Šmilauer, Slávek Zbirovský, Milan Jahoda, František Wald","doi":"10.1002/fam.3260","DOIUrl":"https://doi.org/10.1002/fam.3260","url":null,"abstract":"<p>This paper presents the results of a standard fire resistance test of a loaded steel beam in a horizontal furnace. The beam was tested in three configurations: (1) unprotected, (2) protected with a single 22 mm layer of oriented strand board, and (3) protected with a double layer of the same cladding. The study also describes the development of a model in Fire Dynamics Simulator to predict the thermal conditions in the furnace and to observe the temperature trends on the beam surface, on the cladding, and at various depths in the cladding. A comparison between calculated and measured temperatures showed good agreement for the unprotected beam. However, for the protected beams, the model underestimated temperatures after 15 and 30 min for the single-layer and double-layer protection, respectively. Several potential sources for the discrepancies are identified. The main reason lies probably in the model's inability to correctly account for the effect of gaps in the cladding joints. Future work will focus on improving the accuracy of the model by removing these identified limitations, with particular attention to the behavior of the cladding as a passive fire protection material.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"196-214"},"PeriodicalIF":2.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}