Field Crops Research最新文献

筛选
英文 中文
Historical increases of maize leaf area index in the US Corn Belt due primarily to plant density increases 美国玉米带玉米叶面积指数的历史性增长主要归因于植株密度的增加
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-19 DOI: 10.1016/j.fcr.2024.109615
{"title":"Historical increases of maize leaf area index in the US Corn Belt due primarily to plant density increases","authors":"","doi":"10.1016/j.fcr.2024.109615","DOIUrl":"10.1016/j.fcr.2024.109615","url":null,"abstract":"<div><h3>Context</h3><div>Leaf area index (LAI) and leaf area distribution within the maize plant are important traits used to explain and predict light interception and thus crop productivity.</div></div><div><h3>Objectives</h3><div>Here we investigate breeding and plant density effects of leaf area traits. Our objectives are to 1) quantify maize breeding impacts on leaf area distribution and determine bell-shape coefficients used in crop modeling, 2) dissect the contribution of breeding from plant density, and 3) explore the relationship between LAI and crop yields.</div></div><div><h3>Methods</h3><div>We studied 18 hybrids released between 1983 and 2017 at two density treatments: current (8.5 pl m<sup>−2</sup>) and historical increasing density (from 4.6 to 8.5 pl m<sup>−2</sup>) in Iowa, USA.</div></div><div><h3>Results</h3><div>Results indicated that concurrent changes in hybrids and increases in plant density have increased LAI from 3.4 (in 1983) to 5.9 m<sup>2</sup> m<sup>−2</sup> (in 2017), with the highest LAI increases (&gt;50 %) to be realized in the middle canopy. At historical increasing in plant density treatment, the LAI increased by 1.6 % year<sup>−1</sup>, but the individual plant leaf area decreased by 0.33 % year<sup>−1</sup> from 1983 to 2017. This trade-off indicates that new hybrids are more tolerant to higher plant populations than old hybrids. At current plant density treatment, the year of hybrid release did not affect LAI or individual plant leaf area. New hybrids had 5 % narrower leaf area distributions, 23 % higher optimum LAI values (5.2 vs 4.2 m<sup>2</sup> m<sup>−2</sup>) and 19 % higher grain yields compared to old hybrids.</div></div><div><h3>Conclusions</h3><div>The main reason for the increase in maize LAI in the US Corn Belt is plant density. However, an increase in LAI does not necessarily translate to higher grain yields as new hybrids had significantly higher grain yields than older hybrids at similar LAI values. Present results contribute to our understanding of maize canopy architecture and allow us to better calibrate crop models to accurately estimate LAI and grain yield.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking maize yield potential through exploring canopy-root interactions with nature-based nutrient management 通过自然养分管理探索冠层与根系的相互作用,挖掘玉米产量潜力
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-19 DOI: 10.1016/j.fcr.2024.109618
{"title":"Unlocking maize yield potential through exploring canopy-root interactions with nature-based nutrient management","authors":"","doi":"10.1016/j.fcr.2024.109618","DOIUrl":"10.1016/j.fcr.2024.109618","url":null,"abstract":"<div><h3>Context</h3><div>Understanding the canopy-root interactions is the key to further improving maize yield with dense planting. However, the effects of nature-based nutrient management on these interactions in dense maize production are not yet well understood.</div></div><div><h3>Objective</h3><div>In this study, we attempted to unravel the interplay between above-ground canopy and below-ground root morphology and their correlation with grain yield and quality within a high-yielding maize system (HYMS) and under nature-based nutrient management.</div></div><div><h3>Methods</h3><div>A 2-yr field experiment at the Wuqiao Experimental Station of China Agricultural University was conducted to compare the HYMS with nature-based nutrient management, with current farmers' practices (CP) in 2021 and 2022. The variety, planting density, and fertilization for CP were based on the practices commonly used by local farmers. The HYMS included four treatments: crop-soil management (CSM), rhizosphere management with CSM (CSM+RM), microbial addition with CSM (CSM+MA), and integrated crop-soil system management (ICSM).</div></div><div><h3>Results</h3><div>Above-ground dry matter (AGDM) contributed 74–82 % to grain yield, with the remainder from the harvest index. At physiological maturity, the average AGDM in HYMS was 19.5 t ha<sup>−1</sup> in 2021 and 24.3 t ha<sup>−1</sup> in 2022, 14.9 % and 22.3 % higher than CP. For the canopy, HYMS exhibited a maximum leaf area index of 4.8 in 2021 and 4.9 in 2022, higher than that of CP by 0.40 and 0.39. At silking, the leaf nitrogen content in HYMS surpassed that in CP by 15.0 % with stronger ear leaf in length and thickness. The index of the leaf stay green degree in HYMS was 4.3 % higher than CP. As a result, the source supply/sink demand ratio in HYMS treatments was 0.17, exceeding that of CP by 11.2 %. For visible roots within the 0–60 cm soil depth, HYMS treatments generally had 2.9–13.1 % lower values per plant for root dry matter root nitrogen root length root average diameter root surface area, and root volume compared to CP due to higher plant density. However, the root system in HYMS showed a lower senescence rate than CP.</div></div><div><h3>Conclusions</h3><div>Nature-based nutrient management alleviates the reduction in individual root growth caused by high-density planting, thereby supporting the canopy and resulting in increased AGDM and grain yield.</div></div><div><h3>Implications</h3><div>These findings provide valuable insights for developing effective management strategies to achieve high maize yields under dense planting conditions.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing deficit irrigation and fertilizer application for off-season maize production in Northern Benin 优化赤水灌溉和施肥,促进贝宁北部反季节玉米生产
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-19 DOI: 10.1016/j.fcr.2024.109613
{"title":"Optimizing deficit irrigation and fertilizer application for off-season maize production in Northern Benin","authors":"","doi":"10.1016/j.fcr.2024.109613","DOIUrl":"10.1016/j.fcr.2024.109613","url":null,"abstract":"&lt;div&gt;&lt;h3&gt;Context&lt;/h3&gt;&lt;div&gt;Soil water and fertility management have been the main challenges of crop production in West Africa, and their impacts are exacerbated by climate variability. While research has been conducted to optimize fertility and water applications for rainfed crops production in this region, little is known about the management of these resources for off-season cereal crops production.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Objective&lt;/h3&gt;&lt;div&gt;This study assessed the optimal combination of irrigation and fertilizer levels for off-season maize production in Benin, using the DSSAT CERES-Maize crop model.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Methods&lt;/h3&gt;&lt;div&gt;Two years’ experiments (2018 and 2019) of 4 levels of deficit nutrient (DN) and two years’ experiments (2019 and 2020) of 4 levels of deficit irrigation (DI) were conducted and data were collected on maize growth and yield. DSSAT model was calibrated using crop data from DN experiment in 2018 (DN2018) and DI experiment in 2019 (DI2019), and validated using the DN2019 and the DI2020 experimental data. Then, a long-term scenarios analysis (40-years, 1980–2019) was performed to optimize (i) DI levels, (ii) DN rates; and (iii) combined DI levels and DN rates.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Results&lt;/h3&gt;&lt;div&gt;The model predicted the grain yield (GY) and total aboveground biomass (TB), with a relative root mean square error and a coefficient of efficiency of 18.3 % and 0.38 for the GY and 11.7 % and 0.50 for the TB during the validation, respectively. However, the model did not account for the effects of DI or DN on the phenological dates, which led to similar predicted values for the anthesis and maturity dates among DI and DN treatments during calibration and validation. Moreover, the model was sensitive to periods with high values of temperature (&gt;45°C) recorded during the DI period, inducing a reduction of the grain filling rate in DI treatments. DI treatments were more sensitive to a change in DUL, SLL, SAT, RGFIL and RUE than the DN treatments; while the DN treatments were more sensitive to the CTCNP2. Reducing maize water requirements by 40 % at the vegetative stage resulted in similar predicted grain yield as in the full irrigation treatment; while reducing the water requirements by 60 % resulted in similar predicted water use efficiency (WUE) as in the full irrigation treatment. Furthermore, the inter-annual variability of grain yield was lower under the optimal DI combined with no fertilizer but higher under high DI combined with higher fertilizer rates. Finally, a combination of 40–60 % of deficit irrigation at the vegetative stage and one-third to half of the recommended fertilizer rates depending on resources availability was the optimum combination of DI and DN rates for off-season maize production.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Conclusions&lt;/h3&gt;&lt;div&gt;The projected grain yield and WUE under optimal DI and DN levels were likely underestimated due to shortcomings in the model structure to deal with effects of water and nutrient str","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of nitrogen (N), phosphorus (P), and potassium (K) fertilizers on maize yields, nutrient use efficiency, and soil nutrient balance: Insights from a long-term diverse NPK omission experiment in the North China Plain 氮肥、磷肥和钾肥对玉米产量、养分利用效率和土壤养分平衡的影响:华北平原长期多样化氮磷钾缺失试验的启示
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-17 DOI: 10.1016/j.fcr.2024.109616
{"title":"Impacts of nitrogen (N), phosphorus (P), and potassium (K) fertilizers on maize yields, nutrient use efficiency, and soil nutrient balance: Insights from a long-term diverse NPK omission experiment in the North China Plain","authors":"","doi":"10.1016/j.fcr.2024.109616","DOIUrl":"10.1016/j.fcr.2024.109616","url":null,"abstract":"&lt;div&gt;&lt;h3&gt;Context or problem&lt;/h3&gt;&lt;div&gt;Soil nutrient deficiency is one of the significant challenges in grain production, particularly nitrogen (N), phosphorus (P), and potassium (K). These deficiencies not only reduce crop yields but also cause associated environmental issues, such as soil structure deterioration and ecosystem services diminution.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Objectives&lt;/h3&gt;&lt;div&gt;This research aimed to investigate the long-term effects of NPK fertilizers on soil nutrient properties and maize phenology, further on the grain yield, and to evaluate the nutrient use efficiency and soil nutrient balance under different fertilization managements.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Methods&lt;/h3&gt;&lt;div&gt;A long-term field experiment was initiated in 1990 in a summer maize field in the North China Plain, including five fertilizer treatments: CK (control), NP, NK, PK, and NPK. The soil nutrient properties, maize yields, crop nutrient uptake amount, nutrient recovery efficiency (NRE), nutrient harvest index (NHI), and soil nutrient balance were annually evaluated from 2005 to 2022.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Results&lt;/h3&gt;&lt;div&gt;Significant improvements in maize yields were found under NPK (9081 kg ha&lt;sup&gt;−1&lt;/sup&gt;), NP (6426 kg ha&lt;sup&gt;−1&lt;/sup&gt;), and PK (2668 kg ha&lt;sup&gt;−1&lt;/sup&gt;) compared with CK (1809 kg ha&lt;sup&gt;−1&lt;/sup&gt;) and NK (1656 kg ha&lt;sup&gt;−1&lt;/sup&gt;). The yield increase was mainly attributed to: (1) enhancing in soil nutrient properties, such as soil organic carbon, soil total N (TN), available N (AN), total P (TP), available P (AP), and available K (AK), and (2) the shortened vegetative period, leading to greater sunshine hours (SH) and accumulative growing degree days (GDD) during the reproductive period. Furthermore, a random forest analysis quantified their importance to grain yield, showing that the edaphic factors (mainly SOC, TN, AK, AN, TP, AP, C:N, and N:P) explained a much greater proportion of yield variation compared with phenological factors (mainly GDD during tasseling and physiological maturity stages, and SH during tasseling stage). Additionally, the significantly higher response ratio of both N and P to NRE and NHI implied that N and P fertilizers having a more pronounced impact on improving nutrient use efficiency than K fertilizer. In terms of soil nutrient balance, a most relative soil nutrient balance was detected under NPK treatment, avoiding either substantial nutrient depletion or accumulation under any nutrient deficiency conditions.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Conclusions&lt;/h3&gt;&lt;div&gt;Soil deficiencies in N and P had more severe impacts on maize yields and nutrient use efficiency compared with K deficiency. Additionally, a balanced NPK fertilizer regime effectively managed soil nutrient balance.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Implications or significance&lt;/h3&gt;&lt;div&gt;These findings elucidate the roles of N, P, and K fertilizers in maize production and soil nutrient conditions from a long-term field experiment, which could provide valuable insights for optimizing fertilization mana","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stubble height and irrigation significantly influenced the carbon footprint of ratoon rice cropping system in South China 茬高和灌溉显著影响华南地区轮作水稻种植系统的碳足迹
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-16 DOI: 10.1016/j.fcr.2024.109609
{"title":"Stubble height and irrigation significantly influenced the carbon footprint of ratoon rice cropping system in South China","authors":"","doi":"10.1016/j.fcr.2024.109609","DOIUrl":"10.1016/j.fcr.2024.109609","url":null,"abstract":"&lt;div&gt;&lt;h3&gt;Context&lt;/h3&gt;&lt;div&gt;Ratoon rice (RR) has witnessed a rapid expansion in China primarily driven by its superior profitability, cost-effectiveness and lower labor requirements compared to double-season rice (DR). Identifying proper management of irrigation and stubble height cutting is essential for balancing crop production, greenhouse gases (GHG) emissions of CO&lt;sub&gt;2&lt;/sub&gt;, CH&lt;sub&gt;4&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O, and economic benefits in RR cropping systems. Although the grain yield of RR is significantly affected by agronomic management, little is known about how agronomic practices influence the crop production, carbon footprint (CF), and net ecosystem economic benefits (NEEB) in RR cropping systems.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Methods&lt;/h3&gt;&lt;div&gt;Field experiments were conducted to investigate the impacts of stubble height and water management on grain yield, GHG emissions, CF and of NEEB of RR during the cropping seasons of 2019–2021. The treatments included DR under farmers’ conventional fertilization and irrigation management, high-stubble ratoon rice under farmers’ conventional field water management (FWP), low-stubble ratoon rice under FWP, high-stubble ratoon rice under safe alternative wetting and drying irrigation management (AWD), and low-stubble ratoon rice under AWD.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Results&lt;/h3&gt;&lt;div&gt;The major CF contributor was the direct GHG emissions (&lt;em&gt;GHG&lt;/em&gt;&lt;sub&gt;&lt;em&gt;direct&lt;/em&gt;&lt;/sub&gt;) from crop fields in different treatments. Relative to DR, the annual CF and yield-scaled CF (&lt;em&gt;CF&lt;/em&gt;&lt;sub&gt;&lt;em&gt;y&lt;/em&gt;&lt;/sub&gt;) of RR were reduced by 30.2–37.0 % and 6.21–23.7 %, respectively. The decrease in CF and &lt;em&gt;CF&lt;/em&gt;&lt;sub&gt;&lt;em&gt;y&lt;/em&gt;&lt;/sub&gt; of RR mainly resulted from the lower cumulative emissions of CO&lt;sub&gt;2&lt;/sub&gt; and CH&lt;sub&gt;4&lt;/sub&gt; as well as its shorter growth duration and lower crop biomass relative to DR. Low-stubble treatment led to a significant increase in &lt;em&gt;GHG&lt;/em&gt;&lt;sub&gt;&lt;em&gt;direct&lt;/em&gt;&lt;/sub&gt; compared to high-stubble treatment. However, the CF of low-stubble RR did not differ significantly from that of high-stubble RR due to a substantial enhancement in the net primary production. Low-stubble management reduced the &lt;em&gt;CF&lt;/em&gt;&lt;sub&gt;&lt;em&gt;y&lt;/em&gt;&lt;/sub&gt; of RR by 9.4–12.1 %, due to the higher grain yield. Relative to FWP, AWD had negligible impact on crop biomass and grain yield of RR, while significantly decreased the CF and &lt;em&gt;CF&lt;/em&gt;&lt;sub&gt;&lt;em&gt;y&lt;/em&gt;&lt;/sub&gt; by 17.6–33.2 % and 6.21–23.7 %, respectively. Relative to FWP, the adoption of AWD resulted in a notable increase in the NEEB of RR by 6.8–20.5 %, due to the substantial mitigation in CH&lt;sub&gt;4&lt;/sub&gt; emissions and lower agricultural inputs of electricity and labor. Relative to high-stubble management, low-stubble management enhanced crop N recovery and reduced potential N loss to the environment.&lt;/div&gt;&lt;/div&gt;&lt;div&gt;&lt;h3&gt;Conclusion&lt;/h3&gt;&lt;div&gt;In RR cropping system, low-stubble management coupled with safe AWD irrigation could be a promising strategy in reducing CF while maintaining higher yiel","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapeseed-pea intercrop outperforms wheat-legume ones in land-use efficiency in Mediterranean conditions 在地中海条件下,油菜籽-豆类间作在土地利用效率方面优于小麦-豆类间作
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-15 DOI: 10.1016/j.fcr.2024.109612
{"title":"Rapeseed-pea intercrop outperforms wheat-legume ones in land-use efficiency in Mediterranean conditions","authors":"","doi":"10.1016/j.fcr.2024.109612","DOIUrl":"10.1016/j.fcr.2024.109612","url":null,"abstract":"<div><h3>Context</h3><div>Intercropping has gained attention as a strategy to diversify cereal-based systems and enhance sustainability. However, its performance in Mediterranean conditions, especially in non-organic farming, remains less explored.</div></div><div><h3>Objective</h3><div>Assess the performance of intercropping under contrasting nitrogen (N) fertilisation levels to enhance productivity in the Mediterranean region.</div></div><div><h3>Methods</h3><div>Three intercropping (IC) systems were compared with their respective sole crops under on-farm irrigated conditions in the Ebro Valley (NE Spain). The mixtures included rapeseed/pea (IC-RP) and durum wheat/pea (IC-WP) over three seasons from 2021 to 2023, and durum wheat/faba bean (IC-WF) in 2022 and 2023. A row intercropping design was set at a 50/50 replacement ratio, with two N fertilisation treatments: 0 N (no mineral N) and +N (75 kg mineral N ha<sup>−1</sup>, with additional pre-sowing fertilisation with pig slurry applied at 165 kg N ha<sup>−1</sup> in 2023 only). Key variables included grain yield, land equivalent ratio (LER), overyielding index, biomass and N concentration.</div></div><div><h3>Results</h3><div>The IC-WP and IC-WF showed reduced legumes yields due to competition, with no overyielding or increased land use efficiency (LER=0.94 and 0.86, respectively). In contrast, IC-RP exhibited increased land use efficiency (LER=1.43), though with high variability, and achieved overyielding (+9 %) in only one out of the three years.</div></div><div><h3>Conclusions</h3><div>Intercropping productivity in Mediterranean areas depends heavily on species selection. Pairing species with different physiology, like rapeseed and pea, promotes temporal niche differentiation and compensation mechanisms. Conversely, closer-matched species like wheat and legumes tend to intensify competition, reducing benefits.</div></div><div><h3>Implications or significance</h3><div>Several indicators are necessary to assess intercropping performance. Rapeseed-pea intercropping warrants deeper exploration in Mediterranean conditions.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen input strategies impact fertilizer nitrogen saving by intercropping: A global meta-analysis 氮投入策略对间作节肥的影响:全球荟萃分析
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-12 DOI: 10.1016/j.fcr.2024.109607
{"title":"Nitrogen input strategies impact fertilizer nitrogen saving by intercropping: A global meta-analysis","authors":"","doi":"10.1016/j.fcr.2024.109607","DOIUrl":"10.1016/j.fcr.2024.109607","url":null,"abstract":"<div><h3>Context</h3><div>Several meta-analyses have demonstrated that intercropping increases land use efficiency and fertilizer use efficiency of grain-producing crop species, but no overarching synthesis has been made on the effects of fertilizer management on fertilizer use efficiency.</div></div><div><h3>Research questions</h3><div>Here we assess the relative N use efficiency of species mixtures compared to sole crops under different N input strategies using global data.</div></div><div><h3>Methods</h3><div>We built a global database of yield and fertilizer N input with 600 data records representing the results of 136 independent experiments from 80 publications with four main types of species functional combinations (SFCs), based on key traits that were found relevant in previous intercropping studies: C3-cereal/legume, maize/legume, C4-non-maize/legume and maize/C3-cereal.</div></div><div><h3>Results</h3><div>We found that the literature reports results for four main N input strategies in the intercrop and sole crops: (1) zero fertilizer N input (N<sub>ic</sub>=N<sub>1</sub>=N<sub>2</sub>=0), (2) equal fertilizer N input (N<sub>ic</sub>=N<sub>1</sub>=N<sub>2</sub>&gt;0), (3) intermediate fertilizer N input (N<sub>1</sub>≥N<sub>ic</sub>≥N<sub>2</sub> and N<sub>1</sub>&gt;N<sub>2</sub>), and (4) transgressive fertilizer N input (N<sub>ic</sub>&gt;N<sub>1</sub>≥N<sub>2</sub>), where N<sub>1</sub>, N<sub>2</sub> and N<sub>ic</sub> represent the N input in sole crop 1, sole crop 2 and the intercrop. With zero N input, high land equivalent ratio was found in cereal/legume intercrops but not in maize/C3-cereal intercrops. Intermediate N input (strategy 3) resulted in high LER (land equivalent ratio) and FNER (fertilizer N equivalent ratio) because of the high intercropping advantage of cereals in C3-cereal/legume, maize/legume, and C4-non-maize/legume intercrops and maize in maize/C3-cereal intercrops. Equal N input in the sole crops and the intercrops resulted in LER and FNER being equal and N saving was entirely due to land saving, regardless of SFCs. Transgressive N input resulted in high LER but low FNER.</div></div><div><h3>Conclusions</h3><div>The study confirms that cereal/legume intercropping increases LER at zero N input. Strategies that tailor N input in intercropping to species demand (strategy 3) pair high productivity and LER to high fertilizer N use efficiency. The transgressive N input strategy maximizes LER at the expense of FNER, thus potentially generating high N losses.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crop establishment and nutrient management options: Optimizing productivity, maximize profitability and mitigating adverse climatic conditions in the maize-based production system of Northwest India 作物种植和养分管理方案:在印度西北部以玉米为基础的生产系统中优化生产力、最大限度地提高盈利能力并缓解不利的气候条件
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-11 DOI: 10.1016/j.fcr.2024.109606
{"title":"Crop establishment and nutrient management options: Optimizing productivity, maximize profitability and mitigating adverse climatic conditions in the maize-based production system of Northwest India","authors":"","doi":"10.1016/j.fcr.2024.109606","DOIUrl":"10.1016/j.fcr.2024.109606","url":null,"abstract":"<div><div>Poor fertilizer management and intensive tillage have increased production costs, lowered productivity, and significantly depleted soil nutrients. Although nutrient management options (NMOs) within crop establishment options (CEOs) based maize production system (MPS) is seldom explored, CEOs is increasingly advocated to tackle problems with soil health, food security, and climate change. Developing and implementing effective NMOs is needed for improving system sustainability, profitability, and productivity. We evaluated the effects of CEOs and NMOs on nutrient acquisition, profitability, and maize productivity in the Northwestern Indo-Gangetic Plains (IGPs) of India during 2018–2019. In this study, four CEOs treatment [(i) conventional tillage without residue {CT–R}, (ii) conventional tillage with residue {CT+R}, (iii) permanent raised bed without residue {PRB–R}, and (iv) permanent raised bed with residue {PRB+R}], were kept in the main plot and three NMOs [(i) soil test-based recommendation {STBR}, (ii) nutrient expert-based recommendation {NE}, and (iii) NE with GreenSeeker {NE+GS} were tested in subplots. The results showed that the crop growth metrics, including plant height, dry matter accumulation, leaf area index, and crop growth rate, were significantly greater at PRB+R comparing to treatments. Additionally, PRB+R resulted in the shortest time to 50 % and 75 % silking, indicating enhanced crop development. NMOs significantly improved crop growth parameters. The NE+GS treatment recorded higher plant height (145.8–149.2 cm and 222.3–224.8 cm), dry matter accumulation (195.5–198.4 g/m² and 408.4–412.0 g/m²), leaf area index (2.45–2.48 and 3.24–3.30), and crop growth rate (6.50 and 7.10 g/m²/day). PRB+R showed the shortest silking times (60.5 and 62.2 days). PRB+R also attained the maximum maize yield (6.23 and 6.26 t/ha), by a 17.82 % and 17.57 % increase over CT–R in 2018 and 2019. The NE+GS treatment resulted in the highest maize productivity, with additional yield gains over NE alone and STBR. The lowest cultivation cost ($513.87/ha and $513.97 /ha), highest net return ($1028.91/ha and $1083.60/ha), and best benefit-cost ratio (2.00 and 2.11) were observed with PRB–R, while gross returns ($1573.78/ha and $1630.42/ha) had highest in PRB+R. The NE+GS option achieved higher gross returns ($1544.73/ha and $1599.37/ha), net returns ($918.29/ha and $977.30/ha), and benefit-cost ratios (1.47 and 1.57) with lower cultivation costs ($626.43/ha and $622.06/ha) compared to NE and STBR. The PRB+R and NE+GS combination had found highest nutrient uptake (N, P, K) in grain and straw, highlighting their effectiveness in nutrient management. Overall, our findings recommend adopting PRB+R and NE+GS to optimize maize production system productivity and profitability, ensuring agricultural sustainability and resilience to adverse climatic conditions in Northwest India.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining satellite-sensed and ground data and the BASGRA model to predict grass yield in high-latitude regions 结合卫星传感数据、地面数据和 BASGRA 模型预测高纬度地区的牧草产量
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-11 DOI: 10.1016/j.fcr.2024.109610
{"title":"Combining satellite-sensed and ground data and the BASGRA model to predict grass yield in high-latitude regions","authors":"","doi":"10.1016/j.fcr.2024.109610","DOIUrl":"10.1016/j.fcr.2024.109610","url":null,"abstract":"<div><h3>Context</h3><div>In high-latitude regions, variable weather conditions during the growing season and in winter cause considerable variation in forage grass productivity. Tools for predicting grassland status and yield, such as field measurements, satellite image analysis and process-based simulation models, can be combined in decision support for grassland management. Here, we calibrated and validated the BASic GRAssland (BASGRA) model against dry matter and Leaf area index data from temporary grasslands in northern Norway.</div></div><div><h3>Objective</h3><div>The objective of this study was to compare the performance of model versions calibrated against i) only region-specific ground data, ii) both region-specific ground and Sentinel-2 satellite data and, iii) field trial data from other regions.</div></div><div><h3>Methods</h3><div>Ground and satellite sensed data including biomass dry matter, leaf area index, and autumn and spring ground cover from 2020 to 2022 were acquired from 13 non-permanent grassland fields at four locations. These data were input to BASGRA calibrations together with soil and daily weather data, and information about cutting and nitrogen fertilizer application regimes. The effect of the winter season was taken into account in simulations by initiating the simulations either in autumn or in early spring.</div></div><div><h3>Results</h3><div>Within datasets, initiating the model in spring resulted in higher dry matter prediction accuracy (normalised RMSE 22.3–54.0 %) than initiating the model in autumn (normalised RMSE 41.1–93.4 %). Regional specific calibrations resulted in more accurate biomass predictions than calibrations from other regions while using satellite sensing data in addition to ground data resulted in only minor changes in biomass prediction accuracy.</div></div><div><h3>Conclusion</h3><div>All regional calibrations against data from northern Norway changed model parameter values and improved dry matter prediction accuracy compared with the reference calibration parameter values. Including satellite-sensed data in addition to ground data in calibrations did not further increase prediction accuracy compared with using only ground data.</div></div><div><h3>Implications</h3><div>Our findings show that regional data from farmers’ fields can substantially improve the performance of the BASGRA model compared to using controlled field trial data from other regions. This emphasises the need to account for regional diversity in non-permanent grassland when estimating grassland production potential and stress impact across geographic regions. Further use of satellite data in grassland model calibrations would probably benefit from more detailed assessments of the effect of grass growth characteristics and light and cloud conditions on estimates of grassland leaf area index and biomass from remote sensing.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of rice canopy structure under global dimming 全球变暗条件下水稻冠层结构的变化
IF 5.6 1区 农林科学
Field Crops Research Pub Date : 2024-10-10 DOI: 10.1016/j.fcr.2024.109605
{"title":"Changes of rice canopy structure under global dimming","authors":"","doi":"10.1016/j.fcr.2024.109605","DOIUrl":"10.1016/j.fcr.2024.109605","url":null,"abstract":"<div><h3>Context</h3><div>Global dimming reduces incident radiation, and thus affects rice yield. Canopy structure is closely related to light interception, internal light distribution, photosynthesis and radiation use efficiency (RUE). However, less attention is paid to the effects of global dimming on rice canopy structure. Whether weak light leads to poor canopy structure and thus affects light distribution and RUE, thereby reducing dry matter accumulation and grain yield remains unknown.</div></div><div><h3>Objective and methods</h3><div>The objectives of this study were to explore the effects of global dimming on canopy structure, and its relationships with canopy light distribution and RUE under artificially simulated weak light in hybrid rice. Field experiments with two rice hybrids (Y-liangyou900, YLY900; Chuanyou6203, CY6203) were conducted under no shading (CK), 40 % shading at booting stage (S) and 40 % shading at grain-filling stage (SS) in 2021 and 2022.</div></div><div><h3>Results</h3><div>The effects of shading on the growth characteristics and yield of rice varied with different varieties. Shading at booting stage resulted in larger basal, opening and drooping angles of the top three leaves of both varieties. This rise in leaf angles increased the light extinction coefficient (K<sub>L</sub>) of YLY900, but it had no significant effect on CY6203. Shading significantly reduced RUE during the total growth period, with reductions of 24.3 % and 16.8 % under S, and 11.1 % and 8.9 % under SS for YLY900 and CY6203 in two years, respectively. The total dry weight of YLY900 under S and SS was 34.6 % and 22.8 % lower than that under CK in both years, accordingly, the total dry weight of CY6203 was 27.0 % and 21.6 % lower, respectively. Ultimately, shading resulted in a significant decrease in grain yield compared with CK, and the effect of S on yield was greater than that of SS because of the significantly lower spikelet differentiation under S. In terms of varieties, shading had a greater effect on canopy structure, light distribution and RUE of YLY900 than that of CY6203, which explained yield advantage of CY6203 over YLY900 under shading.</div></div><div><h3>Conclusions</h3><div>Shading increased leaf angles of the top three leaves and caused a draped canopy structure. This change affected the canopy light distribution and RUE. Therefore, the varieties with slightly draped upper leaves might be better able to adapt to the global dimming and reduce yield loss.</div></div><div><h3>Implications or significance</h3><div>Understanding the changes of canopy structure, light distribution and RUE under shading were highly significant for the breeding and cultivation of climate-dependent varieties.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信