Xiaochen Yao , Zhiyu Zhang , Kexin Li , Fenghui Yuan , Xiaofeng Xu , Xiaoyu Long , Changchun Song
{"title":"Optimizing water and nitrogen management to balance greenhouse gas emissions and yield in Chinese rice paddies","authors":"Xiaochen Yao , Zhiyu Zhang , Kexin Li , Fenghui Yuan , Xiaofeng Xu , Xiaoyu Long , Changchun Song","doi":"10.1016/j.fcr.2024.109621","DOIUrl":"10.1016/j.fcr.2024.109621","url":null,"abstract":"<div><h3>Context</h3><div>Irrigation and fertilizer applications, the two most common practices to ensure high yield, affect almost all soil biogeochemical processes including greenhouse gas (GHG) emissions. How to balance irrigation and nitrogen application in farmland to synergize GHG emissions and crop yield is an inherent requirement for achieving sustainability, particularly in China rice paddy fields.</div></div><div><h3>Objective</h3><div>In this study, we first acquired data on GHG emissions and crop yield from rice field experiments worldwide under various irrigation and nitrogen application conditions. Subsequently, based on this dataset, we conducted modeling analysis using machine learning techniques to assess the optimization potential of irrigation and nitrogen fertilizer application in Chinese rice fields, aiming to achieve synergistic reductions in GHG emissions and improvements in crop yield under both historical and future climate scenarios.</div></div><div><h3>Results and conclusions</h3><div>The results indicated that the selected input features provided good predictive accuracy for rice yield and Global Warming Potential (GWP) in rice fields, with R² of 0.71 and 0.85, respectively. Furthermore, upon optimizing irrigation water usage in China rice fields to concurrently address GHG emissions and crop yield, the potential reductions in irrigation water were found to be −21.5 %, −29.1 %, and −13 % under past climate conditions, the SSP126 scenario, and the SSP585 scenario, respectively. After jointly optimizing both irrigation water and nitrogen fertilizer application, the reduction in irrigation water under past climate conditions, the SSP126 scenario, and the SSP585 scenario were −23 %, −31.4 %, and −16.9 % respectively. Correspondingly, the reductions in nitrogen fertilizer application were −22.9 %, −27.3 %, and −24.84 % for each scenario. Additionally, the study revealed a significant regional disparity between the northern and southern regions of China in these optimizations. Overall, southern China exhibits greater potential for irrigation water savings and rice yield increases compared to northern regions, while the potential for greenhouse gas emission reduction is higher in the north.</div></div><div><h3>Significant</h3><div>The findings provided both direction and quantifiable data support for the sustainable production of rice.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"319 ","pages":"Article 109621"},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiyang Yu , Rong Zhu , Xuechen Zhang , Xiangtian Meng , Chao Kong , Guangbin Zhang , Xinhui Liu , Yaying Li , Yongxiang Yu , Huaiying Yao
{"title":"Responses of yield, CH4 and N2O emissions to ratoon rice cropping and different management practices","authors":"Haiyang Yu , Rong Zhu , Xuechen Zhang , Xiangtian Meng , Chao Kong , Guangbin Zhang , Xinhui Liu , Yaying Li , Yongxiang Yu , Huaiying Yao","doi":"10.1016/j.fcr.2024.109622","DOIUrl":"10.1016/j.fcr.2024.109622","url":null,"abstract":"<div><h3>Context or problem</h3><div>Conversion from single rice (SR) or double rice (DR) to ratoon rice (RR) is gaining growing popularity in China. Yet, a quantitative synthesis of their impact on greenhouse gas (GHG, including methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O)) emissions and grain yield has not been conducted.</div></div><div><h3>Objective or research question</h3><div>The objective was to evaluate the effects of conversion from SR or DR to RR on CH<sub>4</sub> and N<sub>2</sub>O emissions, grain yield, global warming potential (GWP), and greenhouse gas intensity (GHGI) and to investigate the potential responses to different operating practices [alternate wetting-drying irrigation, nitrogen management, rice variety selection, and their multiple treatments (multiple measures)] in RR fields (oRR).</div></div><div><h3>Methods</h3><div>In this study, a comprehensive meta-analysis of 571-paired measurements from ratoon rice fields was conducted.</div></div><div><h3>Results</h3><div>Our results showed that the conversion from SR to RR significantly increased CH<sub>4</sub> emissions, grain yield, and GWP by 35.4 %, 30.6 %, and 43.3 %, respectively. In contrast, the conversion from DR to RR decreased CH<sub>4</sub> emissions, grain yield, and GWP by 23.2 %, 7.4 %, and 30.0 %, respectively. Interestingly, both conversions from SR or DR to RR did not affect N<sub>2</sub>O emissions but reduced GHGI in paddy fields, suggesting that RR provided an economically and ecologically sustainable rice planting model. Furthermore, on average, oRR further decreased CH<sub>4</sub> and N<sub>2</sub>O emissions and GHGI from RR fields but did not affect grain yield. Among the existing management practices, the overall effect of multiple measures was better than that of alternate wetting-drying irrigation, nitrogen management, and rice variety selection.</div></div><div><h3>Conclusions</h3><div>Overall, ratoon rice cropping decreased CH<sub>4</sub> emissions and maintained rice grain yield. However, it is also necessary to further implement comprehensive cultivation strategies in the future to maximize the benefits of grain yield and GHG emissions reduction.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"319 ","pages":"Article 109622"},"PeriodicalIF":5.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Xi , Yan-Lei Du , Dong Wang , Jie-Ying Ren , Wen-Yuan Luo , Qiao Peng , Wan-Ying Fang , Feng-Min Li
{"title":"Wheat genetic progress in biomass allocation and yield components: A global perspective","authors":"Yue Xi , Yan-Lei Du , Dong Wang , Jie-Ying Ren , Wen-Yuan Luo , Qiao Peng , Wan-Ying Fang , Feng-Min Li","doi":"10.1016/j.fcr.2024.109617","DOIUrl":"10.1016/j.fcr.2024.109617","url":null,"abstract":"<div><h3>Background</h3><div>Wheat is an essential food source and is subjected to intense breeding efforts for increased grain yield, but stagnation in grain yield improvements has been reported in many regions. The identification of genetically linked factors impeding further progress in wheat grain yield improvement is therefore urgently required.</div></div><div><h3>Method</h3><div>A comparative meta-analysis of data from 66 publicly available field experiments involving multiple wheat genotypes was performed to identify traits altered in breeding programs, their relationship with grain yield, and their past and current impact on grain yield increases.</div></div><div><h3>Results</h3><div>Wheat grain yield can be increased by increasing either the aboveground biomass (ABM) or the harvest index (HI). However, there was no correlation between these traits since a reduction in plant height can occur with increases in the HI and overall grain yield, but with no reduction in the ABM. The combined data from 32 global datasets revealed a substantial increase in wheat grain yield from 1860 to 2017, accompanied by improvement in HI and yield components. When considering only the genotypes introduced from the 1960s to 2017, there was a linear increase observed in both grain yield and HI until the mid-1980s. However, genetic progress in HI and GY has slowed down since then. Before the mid-1980s, there was a decreasing trend observed in plant height which remained relatively static thereafter. While ABM did not exhibit significant increases during this period. After the mid-1980s, significant improvements have been observed in ABM; however, no obvious increase were observed in other yield components.</div></div><div><h3>Conclusions</h3><div>Since the 1980s, there has been an increase in the aboveground biomass of wheat, while grain weigth and grains per m<sup>2</sup> increases trending slowly, and both harvest index and grain yield have almost stagnated. Therefore, increasing grains per m<sup>2</sup> and/or grain weight should be the major research direction to further improve the wheat harvest index and grain yield in the future.</div></div><div><h3>Implications</h3><div>The systematic study of changes in wheat traits in past breeding efforts for improved grain yields has provided useful indicators for the direction of wheat breeding in the future.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109617"},"PeriodicalIF":5.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giorgia Raimondi, Piergiorgio Stevanato, Carmelo Maucieri, Laura Maretto, Andrea Squartini, Maurizio Borin
{"title":"Variations in water availability and N cycling across different seasons in cover crop systems","authors":"Giorgia Raimondi, Piergiorgio Stevanato, Carmelo Maucieri, Laura Maretto, Andrea Squartini, Maurizio Borin","doi":"10.1016/j.fcr.2024.109608","DOIUrl":"10.1016/j.fcr.2024.109608","url":null,"abstract":"<div><h3>Context</h3><div>Cover crops (CCs) exert significant influences on both soil water content (SWC) and nitrogen (N) cycling, with their effects often varying across different stages of crop succession. Many research endeavors overlook this seasonal variability by focusing solely on single sampling time points.</div></div><div><h3>Objective</h3><div>This study seeks to explore how the introduction of diverse CCs influences the seasonal fluctuations of soil nitrate nitrogen (NO<sub>3</sub>-N) and biological (soil N functional genes – NFGs) components of the N cycle, SWC, and cash crop yield over a three-year maize-soybean succession in northeastern Italy.</div></div><div><h3>Methods</h3><div>Three CC management systems were compared: a fixed treatment with triticale; a 3-year succession of rye, crimson clover, and mustard; and a weedy fallow as control. Soil N cycling was assessed using real-time PCR and Ion Chromatography, SWC through Sentek’s Diviner2000.</div></div><div><h3>Results</h3><div>CCs had no impact on cash crop yields and did not display water competition with subsequent cash crops compared to the weedy fallow. At CCs termination, grasses decreased soil NO<sub>3</sub>-N content (as catch crops) while enhancing potential microbial N-fixing activity (<em>nifH</em>), whereas clover led to the highest residual NO<sub>3</sub>-N and potential N nitrification (AOA). Agronomic operations likely mitigated differences in NFG abundances following CC residue incorporation. During the cash crop season, clover, mustard, and weeds (including wild legumes) were estimated to release higher amounts of N according to the CC-NCALC model, compared to rye and triticale which exhibited immobilization. Nonetheless, consistent N nitrification and denitrification potentials were observed across all treatments except for weedy fallow, with higher NFG abundance when soybean was cultivated instead of maize, underscoring the influence of cash crop species on N transformation dynamics.</div></div><div><h3>Conclusions</h3><div>CC and cash crop species, seasonality of crops sequence, and management operations represent pivotal factors shaping the soil N cycling dynamics intricately governed by N-cycling microbial communities and the temporal variability of the SWC. Upon CC termination, grass CCs decrease soil NO<sub>3</sub>-N content, whereas clover CC sustain high NO<sub>3</sub>-N content, enhancing microbial nitrification. Agronomic operations disrupt differences in N processes subsequent to the incorporation of different CCs. However, all CC residues enhance microbe-mediated nitrification and denitrification by cash crop harvest time, potentially more pronounced in the presence of soybean cash crop compared to maize.</div></div><div><h3>Significance</h3><div>The substantial seasonal variability observed emphasizes the necessity of carefully timing sample collection within a crop succession (e.g., at CC termination) for effectively utilizing NFGs and chemical","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109608"},"PeriodicalIF":5.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George Kalogeropoulos , Elvis F. Elli , Slobodan Trifunovic , Sotirios V. Archontoulis
{"title":"Historical increases of maize leaf area index in the US Corn Belt due primarily to plant density increases","authors":"George Kalogeropoulos , Elvis F. Elli , Slobodan Trifunovic , Sotirios V. Archontoulis","doi":"10.1016/j.fcr.2024.109615","DOIUrl":"10.1016/j.fcr.2024.109615","url":null,"abstract":"<div><h3>Context</h3><div>Leaf area index (LAI) and leaf area distribution within the maize plant are important traits used to explain and predict light interception and thus crop productivity.</div></div><div><h3>Objectives</h3><div>Here we investigate breeding and plant density effects of leaf area traits. Our objectives are to 1) quantify maize breeding impacts on leaf area distribution and determine bell-shape coefficients used in crop modeling, 2) dissect the contribution of breeding from plant density, and 3) explore the relationship between LAI and crop yields.</div></div><div><h3>Methods</h3><div>We studied 18 hybrids released between 1983 and 2017 at two density treatments: current (8.5 pl m<sup>−2</sup>) and historical increasing density (from 4.6 to 8.5 pl m<sup>−2</sup>) in Iowa, USA.</div></div><div><h3>Results</h3><div>Results indicated that concurrent changes in hybrids and increases in plant density have increased LAI from 3.4 (in 1983) to 5.9 m<sup>2</sup> m<sup>−2</sup> (in 2017), with the highest LAI increases (>50 %) to be realized in the middle canopy. At historical increasing in plant density treatment, the LAI increased by 1.6 % year<sup>−1</sup>, but the individual plant leaf area decreased by 0.33 % year<sup>−1</sup> from 1983 to 2017. This trade-off indicates that new hybrids are more tolerant to higher plant populations than old hybrids. At current plant density treatment, the year of hybrid release did not affect LAI or individual plant leaf area. New hybrids had 5 % narrower leaf area distributions, 23 % higher optimum LAI values (5.2 vs 4.2 m<sup>2</sup> m<sup>−2</sup>) and 19 % higher grain yields compared to old hybrids.</div></div><div><h3>Conclusions</h3><div>The main reason for the increase in maize LAI in the US Corn Belt is plant density. However, an increase in LAI does not necessarily translate to higher grain yields as new hybrids had significantly higher grain yields than older hybrids at similar LAI values. Present results contribute to our understanding of maize canopy architecture and allow us to better calibrate crop models to accurately estimate LAI and grain yield.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109615"},"PeriodicalIF":5.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yupeng Zhu , Junhao Wang , Yongjun Zhu , Han Lai , Ziren Qu , Jian Zhao , Dan Wei , Pu Wang , Qingfeng Meng
{"title":"Unlocking maize yield potential through exploring canopy-root interactions with nature-based nutrient management","authors":"Yupeng Zhu , Junhao Wang , Yongjun Zhu , Han Lai , Ziren Qu , Jian Zhao , Dan Wei , Pu Wang , Qingfeng Meng","doi":"10.1016/j.fcr.2024.109618","DOIUrl":"10.1016/j.fcr.2024.109618","url":null,"abstract":"<div><h3>Context</h3><div>Understanding the canopy-root interactions is the key to further improving maize yield with dense planting. However, the effects of nature-based nutrient management on these interactions in dense maize production are not yet well understood.</div></div><div><h3>Objective</h3><div>In this study, we attempted to unravel the interplay between above-ground canopy and below-ground root morphology and their correlation with grain yield and quality within a high-yielding maize system (HYMS) and under nature-based nutrient management.</div></div><div><h3>Methods</h3><div>A 2-yr field experiment at the Wuqiao Experimental Station of China Agricultural University was conducted to compare the HYMS with nature-based nutrient management, with current farmers' practices (CP) in 2021 and 2022. The variety, planting density, and fertilization for CP were based on the practices commonly used by local farmers. The HYMS included four treatments: crop-soil management (CSM), rhizosphere management with CSM (CSM+RM), microbial addition with CSM (CSM+MA), and integrated crop-soil system management (ICSM).</div></div><div><h3>Results</h3><div>Above-ground dry matter (AGDM) contributed 74–82 % to grain yield, with the remainder from the harvest index. At physiological maturity, the average AGDM in HYMS was 19.5 t ha<sup>−1</sup> in 2021 and 24.3 t ha<sup>−1</sup> in 2022, 14.9 % and 22.3 % higher than CP. For the canopy, HYMS exhibited a maximum leaf area index of 4.8 in 2021 and 4.9 in 2022, higher than that of CP by 0.40 and 0.39. At silking, the leaf nitrogen content in HYMS surpassed that in CP by 15.0 % with stronger ear leaf in length and thickness. The index of the leaf stay green degree in HYMS was 4.3 % higher than CP. As a result, the source supply/sink demand ratio in HYMS treatments was 0.17, exceeding that of CP by 11.2 %. For visible roots within the 0–60 cm soil depth, HYMS treatments generally had 2.9–13.1 % lower values per plant for root dry matter root nitrogen root length root average diameter root surface area, and root volume compared to CP due to higher plant density. However, the root system in HYMS showed a lower senescence rate than CP.</div></div><div><h3>Conclusions</h3><div>Nature-based nutrient management alleviates the reduction in individual root growth caused by high-density planting, thereby supporting the canopy and resulting in increased AGDM and grain yield.</div></div><div><h3>Implications</h3><div>These findings provide valuable insights for developing effective management strategies to achieve high maize yields under dense planting conditions.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109618"},"PeriodicalIF":5.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Gloriose B. Allakonon , Pierre G. Tovihoudji , P.B. Irénikatché Akponikpè , C.L. Bielders
{"title":"Optimizing deficit irrigation and fertilizer application for off-season maize production in Northern Benin","authors":"M. Gloriose B. Allakonon , Pierre G. Tovihoudji , P.B. Irénikatché Akponikpè , C.L. Bielders","doi":"10.1016/j.fcr.2024.109613","DOIUrl":"10.1016/j.fcr.2024.109613","url":null,"abstract":"<div><h3>Context</h3><div>Soil water and fertility management have been the main challenges of crop production in West Africa, and their impacts are exacerbated by climate variability. While research has been conducted to optimize fertility and water applications for rainfed crops production in this region, little is known about the management of these resources for off-season cereal crops production.</div></div><div><h3>Objective</h3><div>This study assessed the optimal combination of irrigation and fertilizer levels for off-season maize production in Benin, using the DSSAT CERES-Maize crop model.</div></div><div><h3>Methods</h3><div>Two years’ experiments (2018 and 2019) of 4 levels of deficit nutrient (DN) and two years’ experiments (2019 and 2020) of 4 levels of deficit irrigation (DI) were conducted and data were collected on maize growth and yield. DSSAT model was calibrated using crop data from DN experiment in 2018 (DN2018) and DI experiment in 2019 (DI2019), and validated using the DN2019 and the DI2020 experimental data. Then, a long-term scenarios analysis (40-years, 1980–2019) was performed to optimize (i) DI levels, (ii) DN rates; and (iii) combined DI levels and DN rates.</div></div><div><h3>Results</h3><div>The model predicted the grain yield (GY) and total aboveground biomass (TB), with a relative root mean square error and a coefficient of efficiency of 18.3 % and 0.38 for the GY and 11.7 % and 0.50 for the TB during the validation, respectively. However, the model did not account for the effects of DI or DN on the phenological dates, which led to similar predicted values for the anthesis and maturity dates among DI and DN treatments during calibration and validation. Moreover, the model was sensitive to periods with high values of temperature (>45°C) recorded during the DI period, inducing a reduction of the grain filling rate in DI treatments. DI treatments were more sensitive to a change in DUL, SLL, SAT, RGFIL and RUE than the DN treatments; while the DN treatments were more sensitive to the CTCNP2. Reducing maize water requirements by 40 % at the vegetative stage resulted in similar predicted grain yield as in the full irrigation treatment; while reducing the water requirements by 60 % resulted in similar predicted water use efficiency (WUE) as in the full irrigation treatment. Furthermore, the inter-annual variability of grain yield was lower under the optimal DI combined with no fertilizer but higher under high DI combined with higher fertilizer rates. Finally, a combination of 40–60 % of deficit irrigation at the vegetative stage and one-third to half of the recommended fertilizer rates depending on resources availability was the optimum combination of DI and DN rates for off-season maize production.</div></div><div><h3>Conclusions</h3><div>The projected grain yield and WUE under optimal DI and DN levels were likely underestimated due to shortcomings in the model structure to deal with effects of water and nutrient str","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109613"},"PeriodicalIF":5.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ning Wang , Zhipin Ai , Qiuying Zhang , Peifang Leng , Yunfeng Qiao , Zhao Li , Chao Tian , Hefa Cheng , Gang Chen , Fadong Li
{"title":"Impacts of nitrogen (N), phosphorus (P), and potassium (K) fertilizers on maize yields, nutrient use efficiency, and soil nutrient balance: Insights from a long-term diverse NPK omission experiment in the North China Plain","authors":"Ning Wang , Zhipin Ai , Qiuying Zhang , Peifang Leng , Yunfeng Qiao , Zhao Li , Chao Tian , Hefa Cheng , Gang Chen , Fadong Li","doi":"10.1016/j.fcr.2024.109616","DOIUrl":"10.1016/j.fcr.2024.109616","url":null,"abstract":"<div><h3>Context or problem</h3><div>Soil nutrient deficiency is one of the significant challenges in grain production, particularly nitrogen (N), phosphorus (P), and potassium (K). These deficiencies not only reduce crop yields but also cause associated environmental issues, such as soil structure deterioration and ecosystem services diminution.</div></div><div><h3>Objectives</h3><div>This research aimed to investigate the long-term effects of NPK fertilizers on soil nutrient properties and maize phenology, further on the grain yield, and to evaluate the nutrient use efficiency and soil nutrient balance under different fertilization managements.</div></div><div><h3>Methods</h3><div>A long-term field experiment was initiated in 1990 in a summer maize field in the North China Plain, including five fertilizer treatments: CK (control), NP, NK, PK, and NPK. The soil nutrient properties, maize yields, crop nutrient uptake amount, nutrient recovery efficiency (NRE), nutrient harvest index (NHI), and soil nutrient balance were annually evaluated from 2005 to 2022.</div></div><div><h3>Results</h3><div>Significant improvements in maize yields were found under NPK (9081 kg ha<sup>−1</sup>), NP (6426 kg ha<sup>−1</sup>), and PK (2668 kg ha<sup>−1</sup>) compared with CK (1809 kg ha<sup>−1</sup>) and NK (1656 kg ha<sup>−1</sup>). The yield increase was mainly attributed to: (1) enhancing in soil nutrient properties, such as soil organic carbon, soil total N (TN), available N (AN), total P (TP), available P (AP), and available K (AK), and (2) the shortened vegetative period, leading to greater sunshine hours (SH) and accumulative growing degree days (GDD) during the reproductive period. Furthermore, a random forest analysis quantified their importance to grain yield, showing that the edaphic factors (mainly SOC, TN, AK, AN, TP, AP, C:N, and N:P) explained a much greater proportion of yield variation compared with phenological factors (mainly GDD during tasseling and physiological maturity stages, and SH during tasseling stage). Additionally, the significantly higher response ratio of both N and P to NRE and NHI implied that N and P fertilizers having a more pronounced impact on improving nutrient use efficiency than K fertilizer. In terms of soil nutrient balance, a most relative soil nutrient balance was detected under NPK treatment, avoiding either substantial nutrient depletion or accumulation under any nutrient deficiency conditions.</div></div><div><h3>Conclusions</h3><div>Soil deficiencies in N and P had more severe impacts on maize yields and nutrient use efficiency compared with K deficiency. Additionally, a balanced NPK fertilizer regime effectively managed soil nutrient balance.</div></div><div><h3>Implications or significance</h3><div>These findings elucidate the roles of N, P, and K fertilizers in maize production and soil nutrient conditions from a long-term field experiment, which could provide valuable insights for optimizing fertilization mana","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109616"},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangyu Hu , Youqiang Fu , Nanxun Huang , Xinyu Wang , Rui Hu , Xuhua Zhong , Junfeng Pan , Meijuan Li , Yanzhuo Liu , Qunhuan Ye , Yuanhong Yin , Kaiming Liang
{"title":"Stubble height and irrigation significantly influenced the carbon footprint of ratoon rice cropping system in South China","authors":"Xiangyu Hu , Youqiang Fu , Nanxun Huang , Xinyu Wang , Rui Hu , Xuhua Zhong , Junfeng Pan , Meijuan Li , Yanzhuo Liu , Qunhuan Ye , Yuanhong Yin , Kaiming Liang","doi":"10.1016/j.fcr.2024.109609","DOIUrl":"10.1016/j.fcr.2024.109609","url":null,"abstract":"<div><h3>Context</h3><div>Ratoon rice (RR) has witnessed a rapid expansion in China primarily driven by its superior profitability, cost-effectiveness and lower labor requirements compared to double-season rice (DR). Identifying proper management of irrigation and stubble height cutting is essential for balancing crop production, greenhouse gases (GHG) emissions of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O, and economic benefits in RR cropping systems. Although the grain yield of RR is significantly affected by agronomic management, little is known about how agronomic practices influence the crop production, carbon footprint (CF), and net ecosystem economic benefits (NEEB) in RR cropping systems.</div></div><div><h3>Methods</h3><div>Field experiments were conducted to investigate the impacts of stubble height and water management on grain yield, GHG emissions, CF and of NEEB of RR during the cropping seasons of 2019–2021. The treatments included DR under farmers’ conventional fertilization and irrigation management, high-stubble ratoon rice under farmers’ conventional field water management (FWP), low-stubble ratoon rice under FWP, high-stubble ratoon rice under safe alternative wetting and drying irrigation management (AWD), and low-stubble ratoon rice under AWD.</div></div><div><h3>Results</h3><div>The major CF contributor was the direct GHG emissions (<em>GHG</em><sub><em>direct</em></sub>) from crop fields in different treatments. Relative to DR, the annual CF and yield-scaled CF (<em>CF</em><sub><em>y</em></sub>) of RR were reduced by 30.2–37.0 % and 6.21–23.7 %, respectively. The decrease in CF and <em>CF</em><sub><em>y</em></sub> of RR mainly resulted from the lower cumulative emissions of CO<sub>2</sub> and CH<sub>4</sub> as well as its shorter growth duration and lower crop biomass relative to DR. Low-stubble treatment led to a significant increase in <em>GHG</em><sub><em>direct</em></sub> compared to high-stubble treatment. However, the CF of low-stubble RR did not differ significantly from that of high-stubble RR due to a substantial enhancement in the net primary production. Low-stubble management reduced the <em>CF</em><sub><em>y</em></sub> of RR by 9.4–12.1 %, due to the higher grain yield. Relative to FWP, AWD had negligible impact on crop biomass and grain yield of RR, while significantly decreased the CF and <em>CF</em><sub><em>y</em></sub> by 17.6–33.2 % and 6.21–23.7 %, respectively. Relative to FWP, the adoption of AWD resulted in a notable increase in the NEEB of RR by 6.8–20.5 %, due to the substantial mitigation in CH<sub>4</sub> emissions and lower agricultural inputs of electricity and labor. Relative to high-stubble management, low-stubble management enhanced crop N recovery and reduced potential N loss to the environment.</div></div><div><h3>Conclusion</h3><div>In RR cropping system, low-stubble management coupled with safe AWD irrigation could be a promising strategy in reducing CF while maintaining higher yiel","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louise Blanc , Jorge Lampurlanés , Genís Simon-Miquel , Lucie Jean-Marius , Daniel Plaza-Bonilla
{"title":"Rapeseed-pea intercrop outperforms wheat-legume ones in land-use efficiency in Mediterranean conditions","authors":"Louise Blanc , Jorge Lampurlanés , Genís Simon-Miquel , Lucie Jean-Marius , Daniel Plaza-Bonilla","doi":"10.1016/j.fcr.2024.109612","DOIUrl":"10.1016/j.fcr.2024.109612","url":null,"abstract":"<div><h3>Context</h3><div>Intercropping has gained attention as a strategy to diversify cereal-based systems and enhance sustainability. However, its performance in Mediterranean conditions, especially in non-organic farming, remains less explored.</div></div><div><h3>Objective</h3><div>Assess the performance of intercropping under contrasting nitrogen (N) fertilisation levels to enhance productivity in the Mediterranean region.</div></div><div><h3>Methods</h3><div>Three intercropping (IC) systems were compared with their respective sole crops under on-farm irrigated conditions in the Ebro Valley (NE Spain). The mixtures included rapeseed/pea (IC-RP) and durum wheat/pea (IC-WP) over three seasons from 2021 to 2023, and durum wheat/faba bean (IC-WF) in 2022 and 2023. A row intercropping design was set at a 50/50 replacement ratio, with two N fertilisation treatments: 0 N (no mineral N) and +N (75 kg mineral N ha<sup>−1</sup>, with additional pre-sowing fertilisation with pig slurry applied at 165 kg N ha<sup>−1</sup> in 2023 only). Key variables included grain yield, land equivalent ratio (LER), overyielding index, biomass and N concentration.</div></div><div><h3>Results</h3><div>The IC-WP and IC-WF showed reduced legumes yields due to competition, with no overyielding or increased land use efficiency (LER=0.94 and 0.86, respectively). In contrast, IC-RP exhibited increased land use efficiency (LER=1.43), though with high variability, and achieved overyielding (+9 %) in only one out of the three years.</div></div><div><h3>Conclusions</h3><div>Intercropping productivity in Mediterranean areas depends heavily on species selection. Pairing species with different physiology, like rapeseed and pea, promotes temporal niche differentiation and compensation mechanisms. Conversely, closer-matched species like wheat and legumes tend to intensify competition, reducing benefits.</div></div><div><h3>Implications or significance</h3><div>Several indicators are necessary to assess intercropping performance. Rapeseed-pea intercropping warrants deeper exploration in Mediterranean conditions.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"318 ","pages":"Article 109612"},"PeriodicalIF":5.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}