Lixin Liu, Yuning Wang, Jiuyi Sun, Yunan Zhang, Xiangyu Zhang, Lili Wu, Yingli Liu, Xuan Zhang, Yidi Xia, Qiumei Zhang, Ning Gao
{"title":"Authors’ reply to comments on “Improved photostability, solubility, hygroscopic stability and antimicrobial activity of fleroxacin by synthesis of fleroxacin-D-tartaric acid pharmaceutical salt”","authors":"Lixin Liu, Yuning Wang, Jiuyi Sun, Yunan Zhang, Xiangyu Zhang, Lili Wu, Yingli Liu, Xuan Zhang, Yidi Xia, Qiumei Zhang, Ning Gao","doi":"10.1016/j.ejpb.2024.114519","DOIUrl":"10.1016/j.ejpb.2024.114519","url":null,"abstract":"<div><div>This article responds to Dr. Shayanfar’s comment “Improvement of photostability, solubility, hygroscopic stability and antimicrobial activity of fleroxacin by synthesizing fleroxacin-D-tartaric acid pharmaceutical salt”. We rationalized and explained the solubility study portion of the published novel pharmaceutical salt (fleroxacin-D-tartaric acid, FL-D-TT). This confirms that the results of the solubility studies of fleroxacin (FL) and its pharmaceutical salt (FL-D-TT) in our published articles are true and accurate and consistent with the theoretical analysis.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114519"},"PeriodicalIF":4.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Berkenfeld , Simone Carneiro , Carolina Corzo , Flavia Laffleur , Sharareh Salar-Behzadi , Benjamin Winkeljann , Golbarg Esfahani
{"title":"Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics","authors":"Kai Berkenfeld , Simone Carneiro , Carolina Corzo , Flavia Laffleur , Sharareh Salar-Behzadi , Benjamin Winkeljann , Golbarg Esfahani","doi":"10.1016/j.ejpb.2024.114530","DOIUrl":"10.1016/j.ejpb.2024.114530","url":null,"abstract":"<div><div>Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114530"},"PeriodicalIF":4.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa Carine Pünnel , Maria Palmtag , Dominique Jasmin Lunter , Jillian L Perry
{"title":"Development of 3D printed microneedles of varied needle geometries and lengths, designed to improve the dermal delivery of topically applied psoriasis treatments","authors":"Larissa Carine Pünnel , Maria Palmtag , Dominique Jasmin Lunter , Jillian L Perry","doi":"10.1016/j.ejpb.2024.114523","DOIUrl":"10.1016/j.ejpb.2024.114523","url":null,"abstract":"<div><div>The aim of this study was to investigate the impact of using microneedle patches in addition to topical therapy for the treatment of psoriasis. Using continuous liquid interface production (CLIP) 3D printing we manufactured round microneedle array patches (MAPs) with a diameter of 14 mm. Needle geometries were varied from square pyramidal, conical, and obelisk, with varied needle lengths of 400 µm, 600 µm, 800 µm, or 1000 µm. MAPs were characterized for force to fracture, skin penetration, skin damage, as well as their ability to deliver a novel oleogel-based corticosteroid (betamethasone dipropionate (BDP) formulation into <em>ex-vivo</em> porcine skin. We found that the obelisk shaped MAPs are more durable compared to the conical and square pyramidal-shaped MAPs. When the obelisk shaped MAPs were used in combination with the oleogel-based BDP formulation, the amount of BDP penetrating the skin was significantly increased with greater needle lengths.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114523"},"PeriodicalIF":4.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuan Cheng , Pengzhen Wang , Luting Liu, Quanmin Chen, Jeremy Guo
{"title":"Comparative analysis and mechanistic insights into polysorbate 80 stability differences in biopharmaceutical buffer systems","authors":"Zhuan Cheng , Pengzhen Wang , Luting Liu, Quanmin Chen, Jeremy Guo","doi":"10.1016/j.ejpb.2024.114521","DOIUrl":"10.1016/j.ejpb.2024.114521","url":null,"abstract":"<div><div>Polysorbate 80 (PS80) is a non-ionic surfactant extensively utilized in biopharmaceutical formulations for stabilizing proteins. However, PS80 degradation has become a widespread concern throughout the industry over the past decade. In this work, the impact of most frequently employed pH/buffer systems on the stability of PS80 was assessed. PS80 degraded fastest in histidine buffer, followed by acetate and succinate buffers, whereas it remained stable in citrate, phosphate and tris buffers. When there was PS80 degradation, the extent of degradation was found to be pH-dependent. The predominant degradation pathway was oxidation mainly triggered by metal ions. The varying stability of PS80 across different pH/buffer systems was attributed to the role of buffer agents, which can either promote or inhibit the oxidation process through their interactions with metal ions. Specifically, buffers except histidine exhibited metal ion chelation similar to ethylenediaminetetraacetic acid (EDTA), which can suppress the oxidation of PS80, although the effectiveness of chelation varies to different extents. Furthermore, the binding capacity appeared stronger at higher pH in acetate and succinate buffers. Conversely, histidine was reported to form pro-oxidant complexes with metal ions to accelerate PS80 degradation, especially at higher pH levels. Our work for the first time offers a comprehensive understanding of PS80 oxidation in biopharmaceutical buffer systems. This provides a strong foundation for buffer and excipient selection in parenteral formulations.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114521"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bettina Fazekas, Orsolya Péterfi, Dorián László Galata, Zsombor Kristóf Nagy, Edit Hirsch
{"title":"Process analytical technology based quality assurance of API concentration and fiber diameter of electrospun amorphous solid dispersions","authors":"Bettina Fazekas, Orsolya Péterfi, Dorián László Galata, Zsombor Kristóf Nagy, Edit Hirsch","doi":"10.1016/j.ejpb.2024.114529","DOIUrl":"10.1016/j.ejpb.2024.114529","url":null,"abstract":"<div><div>In this study, a novel quality assurance system was developed utilizing Process analytical technology (PAT) tools and artificial intelligence (AI). Our goal was to monitor the critical quality attributes (CQAs) like drug concentration, morphology and fiber diameter of electrospun amorphous solid dispersion (ASD) formulations with fast at-line techniques. Doxycycline-hyclate (DOX), a tetracycline-type antibiotic was used as a model drug with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) as the matrix excipient. The water-based formulations were electrospun with high-speed electrospinning (HSES). Raman and NIR sensors and machine vision-based color measurement techniques were employed to accurately determine the drug concentration. Given that morphology can influence the solubility of the drug, a convolutional neural network (CNN)-based AI model was developed to examine this property and detect manufacturing defects. Additionally, the diameter of electrospun fibrous samples was measured using camera images and a trained AI model, enabling rapid analysis of fiber diameter with results similar to that of scanning electron microscopy (SEM). These methods and models demonstrate potential in-line analytical tools, offering rapid, cheap and non-destructive analysis of ASD formulations.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114529"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of dual drug-loaded polymer nanoconjugate to enhance treatment efficacy for ovarian cancer cells","authors":"Buket Ozel , Senay Sanlier , Cumhur Gunduz , Nur Selvi Gunel","doi":"10.1016/j.ejpb.2024.114526","DOIUrl":"10.1016/j.ejpb.2024.114526","url":null,"abstract":"<div><div>Ovarian cancer is the deadliest gynecological malignancy, representing 2.5 % of all female cancers and accounting for 5 % of female cancer-related fatalities. Despite numerous strategies in its treatment, the disease shows a high recurrence rate and a low survival rate. Consequently, there is a growing focus on targeted therapies in ovarian cancer treatment. It is well-known that VEGFR and LPA pathways undergo alterations in ovarian cancer and stimulate survival, adhesion, migration, invasion, tumor growth and angiogenesis. Cabozantinib (CBZ) is a multi-receptor tyrosine kinase inhibitor that effectively targets MET, VEGFR-1, 2, 3, FLT3, c-KIT, and RET. Ki16425 is a selective inhibitor of LPA receptors 1, 2, and 3. Therefore, targeting LPA receptors and combining with VEGFR inhibitor is a strategic approach for ovarian cancer treatment. In this study, it was aimed to prepare polymer-drug nanoconjugate for both VEGFR and LPAR inhibition. For this, O-(2-Carboxyethyl) polyethylene glycol (PEG<sub>5000</sub>) which advantages are known in cancer studies, was chosen as the carrier system, and a nanoconjugate containing Ki16425 and CBZ (Ki-PEG-CBZ) was synthesized and its potential was evaluated. Initially, CBZ and Ki16425 were conjugated to the PEG<sub>5000</sub> through pH-sensitive hydrazone and ester bonds. After nanoconjugate characterization, in vitro release and its ovarian cancer treatment potential were evaluated on A2780, OVCAR3 and SKOV3 ovarian cancer cell lines. A nanoconjugate was obtained with a particle size of 169 ± 15.23 nm, a zeta potential of −13.5 ± 1.21 mV, and a release profile lasting 48 h, containing CBZ and Ki16425 with drug loading efficiencies of 73.71 ± 0.53 % and 77.72 ± 2.51 %, respectively. In vitro studies have demonstrated that Ki-PEG-CBZ is highly effective against ovarian cancer. We suggest that the developed polymer-drug nanoconjugate is an effective and safe nanoconjugate for the treatment of ovarian cancer.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114526"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Li , Ziyao Kang , Xuefeng Zhang , Yun Sun , Zibo Han , Hao Zhang , Zhaoming Liu , Yu Liang , Jing Zhang , Jin Ren
{"title":"Fluoroamphiphiles for enhancing immune response of subunit vaccine against SARS-CoV-2","authors":"Yuan Li , Ziyao Kang , Xuefeng Zhang , Yun Sun , Zibo Han , Hao Zhang , Zhaoming Liu , Yu Liang , Jing Zhang , Jin Ren","doi":"10.1016/j.ejpb.2024.114528","DOIUrl":"10.1016/j.ejpb.2024.114528","url":null,"abstract":"<div><div>In recent decades, protein-based therapy has garnered valid attention for treating infectious diseases, genetic disorders, cancer, and other clinical requirements. However, preserving protein-based drugs against degradation and denaturation during processing, storage, and delivery poses a formidable challenge. Herein, we designed a novel fluoroamphiphiles polymer to deliver protein. Two different formulations of nanoparticles, cross-linked (CNP) and micelle (MNP) polymer, were prepared rationally by disulfide cross-linked and thin-film hydration techniques, respectively. The size, zeta potential, and morphology of both formulations were characterized and the delivery efficacy of both <em>in vitro</em> and <em>in vivo</em> was also assessed. The <em>in vitro</em> findings demonstrated that both formulations effectively facilitated protein delivery into various cell lines. Moreover, <em>in vivo</em> experiments revealed that intramuscular administration of the two formulations loaded with a SARS-CoV-2 recombinant receptor-binding domain (RBD) vaccine induced robust antibody responses in mice without adding another adjuvant. These results highlight the potential use of our carrier system as a safe and effective platform for the <em>in vivo</em> delivery of subunit vaccines.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114528"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuanrong Sun , Dehui Xie , Zhao Lou , Yujie Zhou , Ming Li , Qingyong Li , Yue Cai
{"title":"T7 Peptide-modified macrophage membrane-coated nanoplatform for enhanced glioma treatment","authors":"Xuanrong Sun , Dehui Xie , Zhao Lou , Yujie Zhou , Ming Li , Qingyong Li , Yue Cai","doi":"10.1016/j.ejpb.2024.114527","DOIUrl":"10.1016/j.ejpb.2024.114527","url":null,"abstract":"<div><div>The efficient and secure delivery of intravenous chemotherapeutic agents across the blood–brain barrier (BBB) to the precise location of a brain tumor is a crucial element in glioma treatment. Herein, we introduce a biomimetic nanoplatform (T7-M-C/S) comprising a core made up of irinotecan hydrochloride (CPT11) and its bioactive metabolite, 7-Ethyl-10-hydroxycamptothecin (SN38), surrounded by a layer of T7-peptide-modified macrophage membrane. CPT11 spontaneously assembles with SN38 into stable and water-dispersible nanoparticles (C/S), greatly enhancing the water solubility of SN38. The integration of the modified peptide with the inherent proteins expressed by macrophage cells confers the nanoplatform with enhanced bioavailability and robust glioma-targeting abilities, ultimately resulting in superior therapeutic outcomes. These discoveries highlight a drug delivery system characterized by a high drug loading capacity, leveraging the macrophage membrane, and promising significant potential for glioma treatment.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114527"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis","authors":"Kangyuan Hu , Xiuhua Li , Zhaodan Tan , Yan Shi","doi":"10.1016/j.ejpb.2024.114525","DOIUrl":"10.1016/j.ejpb.2024.114525","url":null,"abstract":"<div><div>Ovarian cancer is the most common malignant tumor in women. Shikonin (SHK), an herbal extract from Chinese medicine, shows promise in treating ovarian cancer by inducing reactive oxygen species (ROS). However, its clinical use is limited by poor tumor targeting and low bioavailability, and its therapeutic potential is further compromised by the elevated levels of antioxidants such as glutathione (GSH) within tumor cells. In this study, a novel formulation of ROS-responsive micelles loaded with SHK was developed using hyaluronic acid-phenylboronic acid pinacol ester conjugation (HA-PBAP) for targeted therapy of ovarian cancer through disruption of intracellular redox homeostasis. The SHK@HA-PBAP exhibits targeted delivery to ovarian cancer cells through the interaction between HA and CD44 receptors. Upon internalization by cancer cells, the high levels of intracellular ROS triggered the degradation of SHK@HA-PBAP and simultaneously released SHK and generated GSH scavenger quinone methide (QM). The SHK and QM released from the SHK@HA-PBAP effectively induce the production of ROS and deplete intracellular GSH, leading to the disruption of intracellular redox homeostasis and subsequent induction of cell death. These characteristics collectively inhibit the growth of ovarian cancer. In vitro and <em>in vivo</em> studies have demonstrated that SHK@HA-PBAP micelles exhibit superior antitumor efficacy compared to free SHK in both A2780 cells and A2780 tumor-bearing mice. The ROS-responsive SHK@HA-PBA presents a promising therapeutic approach for the treatment of ovarian cancer.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114525"},"PeriodicalIF":4.4,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanqiu Long , Jie Hu , Yan Liu , Danqing Wu , Zhiyun Zheng , Shuangying Gui , Ning He
{"title":"Development of puerarin-loaded poly(lactic acid) microspheres for sustained ocular delivery: In vitro/vivo evaluation","authors":"Yanqiu Long , Jie Hu , Yan Liu , Danqing Wu , Zhiyun Zheng , Shuangying Gui , Ning He","doi":"10.1016/j.ejpb.2024.114524","DOIUrl":"10.1016/j.ejpb.2024.114524","url":null,"abstract":"<div><div>Diabetic retinopathy, an ocular complication of diabetes, <strong>is an</strong> important cause of blindness in adults. Puerarin is considered to have promising potential for clinical use in treating diabetic retinopathy. In this study, we <strong>designed</strong> a novel puerarin-loaded poly(lactic acid) sustained-release microspheres suitable for ocular administration, and we <strong>assessed its</strong> <em>in vitro</em> and <em>in vivo</em> properties. The preparation of puerarin-loaded microspheres was optimized by Box-Behnken response surface design. The encapsulation efficiency and drug loading of microspheres were 35.71% and 3.85%, respectively. The microspheres <strong>exhibited</strong> good dispersion and high safety, <strong>making it suitable for ocular drug delivery</strong>. <em>In vitro</em> release demonstrated that microspheres had a <strong>well-sustained</strong> release effectiveness, and its release behavior <strong>complied</strong> with the zero-order kinetic characteristics. The results of ocular tissue distribution revealed that the <em>C<sub>max</sub></em> <strong>and</strong> <em>AUC<sub>0-∞</sub></em> of the microspheres group in the retina and choroid were considerably higher than those of the solution group and the intravenous injection group. This research revealed that intravitreal injection of <strong>microspheres</strong> can significantly prolong the half-life of puerarin in eye tissues and achieve <strong>sustained drug release</strong>. Therefore, intravitreal injection of microspheres has positive implications for the treatment of diabetic retinopathy.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114524"},"PeriodicalIF":4.4,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}