Sidra Altaf, Mahira Zeeshan, Hussain Ali, Ahmed Zeb, Iqra Afzal, Ayesha Imran, Danish Mazhar, Salman Khan, Fawad Ali Shah
{"title":"Corrigendum to \"pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease\" [Eur. J. Pharm. Biopharm. 204 (2024) 114461].","authors":"Sidra Altaf, Mahira Zeeshan, Hussain Ali, Ahmed Zeb, Iqra Afzal, Ayesha Imran, Danish Mazhar, Salman Khan, Fawad Ali Shah","doi":"10.1016/j.ejpb.2024.114573","DOIUrl":"10.1016/j.ejpb.2024.114573","url":null,"abstract":"","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114573"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum \"The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model\" [Eur. J. Pharm. Biopharm. 94 (2015) 521-531].","authors":"Mona Alibolandi, Fatemeh Sadeghi, Khalil Abnous, Fatemeh Atyabi, Mohammad Ramezani, Farzin Hadizadeh","doi":"10.1016/j.ejpb.2024.114568","DOIUrl":"10.1016/j.ejpb.2024.114568","url":null,"abstract":"","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114568"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization and evaluation of gastroresistant microparticles designed for siRNA oral delivery.","authors":"Thomas Stalder, Nathan Koenig, Raphaël Cornu, Gautier Laurent, Yann Pellequer, Florian Jurin, Brice Moulari, Hélène Martin, Arnaud Beduneau","doi":"10.1016/j.ejpb.2024.114588","DOIUrl":"10.1016/j.ejpb.2024.114588","url":null,"abstract":"<p><p>Oral administration of siRNA is a challenging strategy for the local treatment of intestinal diseases, including cancer and inflammatory bowel disease. Both nucleic acids and delivery systems, especially lipid nanoparticles (LNPs), are sensitive to the acidic pH of the stomach, bile salts and digestive enzymes. The present work focuses on the design and evaluation of gastroresistant alginate microparticles (MPs) prepared with an original process for oral delivery of siRNA. MPs with a mean diameter of less than 200 µm were obtained without extrusion and emulsification methods. Onpattro® marketed pharmaceutical product and TNF-α siRNA-loaded LNPs were successfully microencapsulated with an efficiency of at least 80 %. Gastroresistance properties and intestinal release were demonstrated in simulated gastric and intestinal fluids. After exposure to simulated gastric fluid, MPs in contact with hepatocyte and LPS-activated monocyte-derived macrophage cell lines reduced the expression of transthyretin and TNF-α, demonstrating the preservation of the siRNA activity.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114588"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanmei Huang, Xiaohong Yang, Xueying Qin, Yingyan Shen, Yu Luo, Liu Yang, Xiumei Ke, Rongping Yang
{"title":"Co-assembled supramolecular hydrogel of asiaticoside and Panax notoginseng saponins for enhanced wound healing.","authors":"Hanmei Huang, Xiaohong Yang, Xueying Qin, Yingyan Shen, Yu Luo, Liu Yang, Xiumei Ke, Rongping Yang","doi":"10.1016/j.ejpb.2024.114617","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114617","url":null,"abstract":"<p><p>Self-assembling natural drug hydrogels have emerged as promising biomaterials for scalable and customizable drug delivery systems attributed to their inherent biocompatibility and biodegradability. Asiaticoside (AS), a bioactive compound derived from Centella asiatica (L.) Urb., is known for its antioxidant, antifibrotic, and anti-inflammatory properties, primarily accelerating wound healing through the promotion of collagen synthesis. However, its low water solubility leads to poor transdermal absorption and reduced bioavailability when applied topically. Panax notoginseng saponins (PNS), active compounds derived from the stems of Panax notoginseng (Burk.) F.H. Chen, exhibit amphiphilic and surfactant properties, rendering them effective stabilizers. Our research has demonstrated that the co-assembly of AS and PNS forms a hydrogel, termed AS&PNS hydrogel, which significantly enhances wound healing by reducing interleukin-6 (IL-6) levels and promoting the production of vascular endothelial growth factor (VEGF). Treatment with AS&PNS hydrogel also tended to normalize epidermal thickness and improve collagen fiber organization at the wound site. This novel hydrogel material presents a straightforward and effective approach to managing skin wounds.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114617"},"PeriodicalIF":4.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabiano Bonaventura, Stefan Scheler, Vladimir Novak, Margie P Olbinado, Matthias Wagner, Christian Grünzweig, Alexander Zuern
{"title":"Does needle clogging change the spatial distribution of injected drug in tissue? New insights by X-ray computed tomography.","authors":"Fabiano Bonaventura, Stefan Scheler, Vladimir Novak, Margie P Olbinado, Matthias Wagner, Christian Grünzweig, Alexander Zuern","doi":"10.1016/j.ejpb.2024.114615","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114615","url":null,"abstract":"<p><p>Prefilled syringes (PFS) are primary packaging materials that offer convenience and safety for subcutaneous injection of parenteral drug solutions. However, an increasingly common problem with the trend towards higher drug concentrations is the clogging of the needle during storage due to evaporative water loss and consequent solidification of the drug. In contrast to all previous studies on this topic, this work focuses on pharmacokinetically relevant aspects and investigates the effects of needle clogging on the spatial distribution of the injected drug in the tissue. X-ray computed tomography (XCT) (both tube-based and synchrotron-based) was used to visualize and analyze the spreading pattern and the fate of the injected liquid in porcine skin. By using controlled injection and force measurement the tissue distribution was correlated with the plunger force profile and the fluid dynamics of the jet. Studies of monoclonal antibody solution demonstrate that clogs, which are formed by evaporation of water and solidification of drug solution in the needle tip, usually dissolve in the flow of the liquid during injection. In the initial injection phase, the liquid jet starts to escape the needle only through a narrow channel in the clog. The resulting high dynamic pressure can alter the distribution of the liquid in the tissue, causing a long tail of liquid that penetrates deep into the fibrous network of the subcutaneous layer. However, the volume of this tail was calculated to be low relative to the overall volume of the injected drug solution (less than 2.4%) and is therefore unlikely to have a significant effect on the absorption kinetics of the injected drug. In addition, it was shown that if a clog were to enter the tissue, it would quickly dissolve.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114615"},"PeriodicalIF":4.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multistage microfluidic assisted Co-Delivery platform for dual-agent facile sequential encapsulation.","authors":"Shixin Li, Bing Yang, Liang Ye, Shuqi Hu, Benhong Li, Yanjun Yang, Yichuan Hu, Xiaobin Jia, Liang Feng, Zhiwei Xiong","doi":"10.1016/j.ejpb.2024.114616","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114616","url":null,"abstract":"<p><p>The integration of multiple therapeutic agents within a single nano-drug carrier holds promise for advancing anti-tumor therapies, despite challenges posed by their diverse physicochemical properties. This study introduces a novel multi-stage microfluidic co-encapsulation platform designed to address these challenges. By carefully orchestrating the nano-precipitation process sequence, this platform achieves sequential encapsulation of two drugs with markedly different physicochemical characteristics. Using the multi-stage microfluidic TrH chip, hybrid nanoparticles (HNPs) loaded with paclitaxel (PTX)-simvastatin (SV), PTX-lenvatinib (LV), and SV-LV were synthesized. Unlike conventional Bulk methods and existing commercial microfluidic Tesla and Baffle chips, the HNPs produced here exhibit a core-shell structure and uniform particle size distribution, crucial for enhancing drug delivery efficacy. Notably, this method achieves nearly 100 % encapsulation efficiency for both drugs across a dual-drug feed ratio range from 1:4 to 4:1. Drug loading efficiencies were quantified for PTX-SV/HNPs (14.97 ± 1.19 %), PTX-LV/HNPs (16.58 ± 0.69 %), and SV-LV/HNPs (19.21 ± 2.38 %). PTX-SV/HNPs demonstrated sequential release characteristics of SV and PTX, as confirmed by in vitro drug release experiments. Significantly, PTX-SV/HNPs exhibited superior cytotoxicity against HepG2 cells compared to individual PTX and SV treatments, underscoring their potential in cancer therapy. In conclusion, the developed multi-stage microfluidic platform represents a robust strategy for co-encapsulating drugs with substantial physicochemical disparities, thereby offering a promising avenue for advancing multi-drug delivery in nanomedicine applications.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114616"},"PeriodicalIF":4.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmoud Farhan, Joanne Bennett, Anne Cram, Naomi McCallion, Fiona O'Brien
{"title":"Risk assessment tool for compatibility of concurrent administration of intravenous medications with parenteral nutrition admixture.","authors":"Mahmoud Farhan, Joanne Bennett, Anne Cram, Naomi McCallion, Fiona O'Brien","doi":"10.1016/j.ejpb.2024.114614","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114614","url":null,"abstract":"<p><p>Compatibility of parenteral nutrition admixture (PNA) and intravenous medications (IVMs) is a major consideration for clinicians and clinical pharmacists, especially when concurrent administration of PNA with IVMs is unavoidable. This is relatively common in children and neonates, where limited vascular access can be challenging. The purpose of this paper is to create a risk assessment tool that will assist clinical judgment in evaluating the potential incompatibility risk between PNA media and the IVMs when they are administered together through the same intravenous line. The tool will help to provide a more structured approach for healthcare professionals involved in the provision and administration of PNA to assess the risk of incompatibility of IVMs with PNA media.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114614"},"PeriodicalIF":4.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellie Ponsonby-Thomas, Anna C Pham, Shouyuan Huang, Malinda Salim, Laura D Klein, Simone Margaard Offersen, Thomas Thymann, Ben J Boyd
{"title":"Human milk improves the oral bioavailability of the poorly water-soluble drug clofazimine.","authors":"Ellie Ponsonby-Thomas, Anna C Pham, Shouyuan Huang, Malinda Salim, Laura D Klein, Simone Margaard Offersen, Thomas Thymann, Ben J Boyd","doi":"10.1016/j.ejpb.2024.114604","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114604","url":null,"abstract":"<p><p>Clofazimine is an emerging drug for the treatment of cryptosporidiosis in infants. As a poorly water-soluble drug, the formulation of clofazimine in age-appropriate vehicles is challenging and often results in the use of off-label formulations. Milk-based vehicles such as human milk and bovine milk have been investigated as age-appropriate formulations and shown to increase the solubilisation of poorly water-soluble drugs via enhanced solubility in lipid digestion products in vitro. We hypothesised that administration of clofazimine within a milk-based vehicle would enhance bioavailability for infant patients. Towards this objective, suspensions of clofazimine in human and bovine milk were orally administered separately to piglets and rats and the subsequent plasma concentrations were compared to those after administration of an aqueous drug suspension. Initial investigations with a rodent model showed a significant increase (258%) in the oral bioavailability of clofazimine when administered with human milk. Similarly, the oral bioavailability of clofazimine was significantly higher when administered in both human (154%) and bovine milk (175%) using a neonatal piglet model, suggesting comparable enhancement in oral bioavailability could be achieved with human or bovine milk. These findings demonstrate the potential of human milk in particular to provide an effective administration vehicle for clofazimine administration to infants without the need for additional excipients.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114604"},"PeriodicalIF":4.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damla Kelle, Kai R Speth, María Martínez-Negro, Volker Mailänder, Katharina Landfester, Banu Iyisan
{"title":"Effect of protein corona on drug release behavior of PLGA nanoparticles.","authors":"Damla Kelle, Kai R Speth, María Martínez-Negro, Volker Mailänder, Katharina Landfester, Banu Iyisan","doi":"10.1016/j.ejpb.2024.114611","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114611","url":null,"abstract":"<p><p>Poly(lactic-co-glycolide) (PLGA) nanoparticles are highly attractive for drug delivery due to their biocompatibility, biodegradability, and potential for controlled release and targeting. Despite these outstanding properties, challenges remain for clinical translation as nanomedicines. One significant factor to address is highlighting the protein corona structure and its effect on the drug release behavior. Protein corona forms upon contact with the bloodstream and influences the fate of the nanoparticles in the body. Here, we synthesize PLGA nanoparticles by miniemulsion/solvent evaporation technique, followed by the formation of protein corona on their surface using either human plasma or fetal bovine serum (FBS). Analysis by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry (LC-MS) reveals that dysopsonin proteins, mainly albumin, dominate the protein corona structure, suggesting prolonged blood circulation for the PLGA nanoparticles. As an anticancer drug, doxorubicin is encapsulated into PLGA nanoparticles, and in vitro drug release is performed at pH 7.4. While there is a minimal change in cumulative drug release after protein corona formation, our comprehensive analysis through different kinetic models shows that the protein corona alters the drug release profile of PLGA nanoparticles to a modest extent.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114611"},"PeriodicalIF":4.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In vivo systemic evaluation of nasal drug absorption from powder formulations in rats.","authors":"Ryosuke Tatsuta, Akiko Tanaka, Ken-Ichi Ogawara, Kazutaka Higaki, Tomoyuki Furubayashi, Toshiyasu Sakane","doi":"10.1016/j.ejpb.2024.114612","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114612","url":null,"abstract":"<p><p>Despite the potential benefits of nasal drug delivery, there is a need for a systematic evaluation of the efficacy of powder formulations adhering to the nasal mucosa. This study aims to establish a systematic evaluation method for nasal drug absorption from powder formulations. We selected three model compounds-antipyrine, griseofulvin, and acyclovir-and analyzed their pharmacokinetics following nasal administration of powder formulations under physiological conditions. Our experimental design incorporated assessments of the drug absorption patterns. Antipyrine demonstrated rapid absorption exclusively from the nasal cavity. In contrast, griseofulvin exhibited absorption from the nasal cavity and the gastrointestinal tract. This phenomenon could be attributed to the rapid nasal clearance of the drug with an initial half-life of 5 min. To further establish the physiological validity of our method, we conducted an experiment to investigate the impact of changing the mucociliary clearance (MC) on nasal absorption that resulted in a 1.2-fold increase in the bioavailability of acyclovir upon prolonged MC. Our findings support the utility of established methods in evaluating nasal absorption and their behavior in the nasal cavity. This study holds a promising advancement toward effective drug delivery via nasal administration, potentially leading to targeted delivery and improved therapeutic outcomes.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114612"},"PeriodicalIF":4.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}