{"title":"Impact of anode surface modifications on microbial fuel cell performance and algal biomass production.","authors":"Necla Altın, Başar Uyar","doi":"10.1080/09593330.2024.2428445","DOIUrl":"https://doi.org/10.1080/09593330.2024.2428445","url":null,"abstract":"<p><p>In this study, the performance of dual-chamber microbial fuel cells with carbon fiber (CF) anodes surface modified by multi-walled carbon nanotube coating (CF-MWCNT) and nitric acid treatment (CF-HNO<sub>3</sub>) was compared. The performance of all these modified anodes was found to be better than bare electrode. The modified anodes were shown to significantly outperform the bare electrode anodes. CF-MWCNT and CF-HNO<sub>3</sub> modification increased the maximum power density by 1.60 and 2.88 times to 107 and 193 mw/m<sup>2</sup>, respectively, compared to the bare electrode anode (67 mW/m<sup>2</sup>). Due to the effect of the modifications, biofilm formation became more denser and stable, the biodegradation rate of organic matter increased and more efficient electron transfer was achieved on the anode surface. These results present effective and simple methods to enhance power generation with carbon fiber electrodes and also suggest ideas that can further improve the performance of modified carbon fiber electrodes. The content of algal biomass obtained in the cathode chamber was analyzed and the highest biomass with 0.71 g/L was obtained in the cell with CF-HNO<sub>3</sub> anode. Carbohydrate, protein and lipid contents were found to be 55%, 15.4% and 24%, respectively. In conclusion, this study demonstrates that surface modifications of carbon fiber anodes are an effective method to enhance the power generation performance of microbial fuel cells and reveals that this approach offers a viable strategy to improve energy efficiency.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-12"},"PeriodicalIF":2.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro William Paiva Moreira Júnior, Felipe de Souza Miranda, Eduardo Sant Ana Petraconi Prado, Alexei Mikhailovich Essiptchouk, Antônio Carlos Cruz, Gilberto Petraconi Filho
{"title":"Dairy sludge characteristics and its degradation during thermal treatment and thermal plasma treatment.","authors":"Pedro William Paiva Moreira Júnior, Felipe de Souza Miranda, Eduardo Sant Ana Petraconi Prado, Alexei Mikhailovich Essiptchouk, Antônio Carlos Cruz, Gilberto Petraconi Filho","doi":"10.1080/09593330.2024.2427425","DOIUrl":"10.1080/09593330.2024.2427425","url":null,"abstract":"<p><p>Thermal treatment and thermal plasma treatment processes of dairy sludge were conducted. The thermal treatment was undertaken at temperatures from 200 °C to 1000 °C to establish the chemical composition and thermal degradation of the sludge. These results served as a foundation for interpreting the properties of the vitreous slag obtained from the sludge treated in the DC-transferred arc plasma reactor. The dairy sludge is characterised by a high volatile matter but also presents substantial ash content, with primary elements such as Al, P, Si, Ca, and Fe. The characterisations of the samples were made employing techniques like X-ray fluorescence, X-ray diffraction analysis (XRD), FT-IR spectrometry, Thermogravimetric analysis, and Differential Scanning Calorimetry. The results highlight the degradation of primary milk components like lactose, casein protein, and milk fat, with distinct differential thermogravimetric peaks at 230, 316, and 479 °C. As the temperature of thermal treatments approached 1000°C, silicon dioxide, calcium silicon, dicalcium silicate, and hydroxyapatite were identified in XRD spectra. Plasma-treated sludge features various oxide crystalline structures, including Al<sub>2</sub>O<sub>3</sub>, CaO(Al<sub>2</sub>O<sub>3</sub>)<sub>6</sub>, CaO(Al<sub>2</sub>O<sub>3</sub>)<sub>2</sub>, Ca<sub>2</sub>Al(AlSi)O<sub>7</sub>, KFeO<sub>2</sub>, and ZrO<sub>1.98</sub>. FTIR analysis of sludge identifies a complex organic composition presenting alkanes, amines, amides, hydroxyl groups, and metallic and semi-metallic oxide bond absorption. The FTIR results suggest the degradation of organic compounds and retention of phosphorous and aluminum bonds, especially after 600 °C. The vitreous slag from plasma treatment exhibits distinct composition characteristics without organic compound, presenting a vitreous and metallic/ceramic matrix. This research underscores the potential of thermal plasma treatments to neutralise dairy sludge.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunbo Jiang, Teng Wang, Xijun Wu, Zhenguo Dang, Huaien Li
{"title":"Replacement depth and lifespan prediction of enhanced bioretention media under TSS impact conditions.","authors":"Chunbo Jiang, Teng Wang, Xijun Wu, Zhenguo Dang, Huaien Li","doi":"10.1080/09593330.2024.2428836","DOIUrl":"10.1080/09593330.2024.2428836","url":null,"abstract":"<p><p>The enhanced bioretention system provides a new way to solve the problems of stormwater management brought by urbanization. The knowledge on effects of media modification and long-term operation is scattered, so clogging interaction function, clogging time and depth are analysed to uncover the underneath. River sand, loess, and compost were used as basic fillers, and air-dried water treatment residual (WTR) and recycled aggregate from construction waste (RACW) were used as modifiers to formulate mixed fillers, and synchronized observation of the change rule of hydraulic conductivity and porosity of vertical layering. The study found that the infiltration coefficient of each system tended to decay gradually from top to bottom as the influent TSS accumulated. A set of improved media clogging process prediction framework has been proposed, using rainfall conditions in Northwest China as input conditions, the system clogging time is about 5.5∼7.1 years and the depth of replacement is about 35 cm based on the principles of cake filtration and deep filtration. The results can further understand the function variation of bioretention system under TSS impact conditions, which is helpful to the prediction of the operating life of the system and the evaluation of media replacement depth.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-11"},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Zhang, Kaishu Liu, Diannan Huang, Yunan Gao, Jiaxin Li
{"title":"Analysis of the regulation mechanism for salt-tolerant anammox process: process performance and metabolic insights.","authors":"Li Zhang, Kaishu Liu, Diannan Huang, Yunan Gao, Jiaxin Li","doi":"10.1080/09593330.2024.2428440","DOIUrl":"10.1080/09593330.2024.2428440","url":null,"abstract":"<p><p>In this study, the start-up and microbial domestication of a salt-tolerant functional anammox system was investigated by gradually increasing the salinity level in a stabilized anammox system in the laboratory. After 44 days of stable operation, the salt-tolerant system was successfully activated, at which time the salinity of the influent water was 3 g/L, and the maximum removal efficiency of ammonia nitrogen and nitrite nitrogen in the system reached 94.18% and 96.66%, respectively, and then the ammonia nitrogen and nitrite nitrogen removal efficiency were stabilized at 88.17% and 96.48% after the enrichment domestication for 89 days. The system was operated in the salinity of 10 g/L, with the concentration of each nitrogen compound measured at the same time. The ammonia nitrogen removal efficiency decreased to 59.93% at a salinity of 10 g/L, which had a significant impact on the system. High-throughput sequencing revealed that the system was enriched with a large number of <i>Chloroflexi</i>, the relative abundance of which increased from 19.46% to 52.33%, and the genus of AnAOB was transformed from <i>Candidatus Brocadia</i> to <i>Candidatus Kuenenia, Candidatus Kuenenia</i>, with a percentage of 4.78%. The system successfully achieved the simultaneous removal of ammonia nitrogen and nitrite nitrogen under salinity stress, which to a certain extent indicated that AnAOB could achieve the initiation and enrichment domestication under salinity conditions, and could provide a basis for the efficient and low-consumption treatment of high salinity nitrogen-containing wastewater.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-stage anoxic/oxic sequencing batch reactor realizes shortcut nitrogen removal for anaerobically co-digested liquor of municipal sludge and urban organic wastes.","authors":"Rui Geng, Yong Cheng, Haixin Jiang, Shiting Liu, Ruibo Qian, Baihong An, Xianchun Tang, Hongbin Chen","doi":"10.1080/09593330.2024.2428835","DOIUrl":"10.1080/09593330.2024.2428835","url":null,"abstract":"<p><p>Nitrogen removal from the combined anaerobic digestion dehydration liquor (CADDL) of municipal sludge and urban organic wastes is challenging due to high ammonium concentrations, low C/N ratio, and poor biodegradability. This study proposes a multi-stage anoxic/oxic (A/O) sequencing batch reactor with step feeding to realize partial nitrification and denitrification for shortcut nitrogen removal from the CADDL. We investigated the effects of external carbon source (acetate), dissolved oxygen (DO), A/O duration ratio, and A/O stage number on biological nitrogen removal. Moreover, we assessed the microbial community structure and nitrogen removal pathway. The results showed that the C/N consumption ratio for nitrite reduction to dinitrogen was 3.0 mg COD/mg N, and denitrifying bacteria yielded about 0.43. The optimal dosage of acetate was 2.2 mg COD/mg N. High DO concentration (1.5∼3.0 mg/L) in the aerobic stage improved the ammonia-oxidizing bacteria activity and nitrogen removal rather than worsening the nitritation. A high A/O duration ratio (50 min/60 min) was conducive to complete denitrification of nitrite. The three-stage A/O had an excellent nitrogen removal performance. Under optimal conditions, the nitrite accumulation ratio of nitritation and the total inorganic nitrogen removal reached 100% and 90.1%, respectively. The dominant ammonia-oxidizing bacteria was the genus <i>Nitrosomonas</i> (0.76% abundance), and the dominant denitrifying bacteria was <i>Thauera</i> (0.24% abundance). The nitrite-oxidizing bacteria were not detected, confirming that the biological nitrogen removal pathway was partial nitrification and denitrification. These findings provide a feasible option for the low-carbon nitrogen removal treatment for the CADDL of municipal sludge and urban organic wastes.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selective leaching of rare earths, base metals and precious metals from used smartphones.","authors":"Salmata Diallo, Lan-Huong Tran, Dominic Larivière, Jean-François Blais","doi":"10.1080/09593330.2024.2423906","DOIUrl":"https://doi.org/10.1080/09593330.2024.2423906","url":null,"abstract":"<p><p>Discarded smartphones represent a valuable source of rare earths (REE), base metals and precious metals. This study focussed on the optimisation of three-stage selective leaching conditions for REE, copper and precious metals (Au and Ag), respectively, contained in printed circuit boards (PCBs) found in end-of-life smartphones. The effects of several leaching conditions, such as sulphuric acid and thiourea concentrations, were investigated using a statistical approach based on a design of experiments using Box-Behnken methodology. Optimum leaching efficiencies were achieved when PCB powder was contacted (solid concentration of 100 g/L) with (1) a 0.2 M H<sub>2</sub>SO<sub>4</sub> solution for 30 min at a temperature of 20°C for REEs; (2) a 1 M H<sub>2</sub>SO<sub>4</sub> solution with 67 g H<sub>2</sub>O<sub>2</sub>/L for 180 min at 80°C for Cu and (3) a solution of 42 g thiourea/L in 0.1 M H<sub>2</sub>SO<sub>4</sub> and 9 g Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>/L for 120 min at 20°C for Au and Ag. Using these optimal conditions, a complete leaching procedure included an REE solubilisation step and a base metal leaching step, both repeated twice, and a precious metal leaching step. This procedure solubilised 91% of the REE, 100% of the copper, 98% of the gold and 87% of the silver contained in the PCB powder during their respective leaching stages.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-16"},"PeriodicalIF":2.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Zhilin, Shi Yunchun, Gou Fang, Ai Shuo, Liu Hao, Ke Xihong, Peng Chao
{"title":"Theoretical analysis and application of immobilized methanotrophs as typical adsorbent materials for adsorption/degradation of trichloroethylene.","authors":"Xing Zhilin, Shi Yunchun, Gou Fang, Ai Shuo, Liu Hao, Ke Xihong, Peng Chao","doi":"10.1080/09593330.2024.2427427","DOIUrl":"https://doi.org/10.1080/09593330.2024.2427427","url":null,"abstract":"<p><p>Trichloroethylene (TCE) contamination presents a significant environmental challenge, necessitating efficient treatment solutions. This study aimed to develop an optimized immobilized bioreactor using methanotrophs for TCE degradation. Activated carbon fibres were identified as the optimal immobilization material, with an adsorption rate of 6-23 h - significantly faster than over 50 h for other materials - and the highest methane oxidation capacity of 0.970 mL·g<sup>-1</sup>·h<sup>-1</sup>. Adsorption kinetics indicated that activated carbon fibres followed a second-order kinetic model with a constant of 0.598 g·mg<sup>-1</sup>·h<sup>-1</sup>, suitable for low-concentration bacterial solutions. Thermodynamic analysis confirmed an exothermic process, favouring lower temperatures (288.15 K). The negative interaction energies, as per DLVO theory, suggested electrostatic attraction as a key mechanism. The bioreactor achieved 99% TCE removal within 1 h at an initial concentration of 10 mg·L<sup>-1</sup>, with visible microbial immobilization within 5 days. This research provides a novel and effective approach for using immobilized methane-oxidizing bacteria in TCE treatment, offering both theoretical and practical advancements for chlorinated hydrocarbon wastewater management.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-12"},"PeriodicalIF":2.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saiyun He, Pan Yu, Yi Shao, Xintong Gao, Takashi Sakamaki, Xianning Li
{"title":"Enhanced activity of mixed-culture electroactive biofilms and sulfamethoxazole removal efficiency by adding N-acyl-homoserine lactones in bio-electrochemical system.","authors":"Saiyun He, Pan Yu, Yi Shao, Xintong Gao, Takashi Sakamaki, Xianning Li","doi":"10.1080/09593330.2024.2428441","DOIUrl":"https://doi.org/10.1080/09593330.2024.2428441","url":null,"abstract":"<p><p>The addition of exogenous quorum sensing signaling molecules significantly enhanced the degradation efficiency of antibiotics, such as chloramphenicol in bio-electrochemical systems (BESs). However, the effects and mechanisms by which AHLs addition in BES facilitated the removal of sulfamethoxazole (SMX) remained inadequately explored. This study systematically compared the electrochemical performance and SMX removal efficiency in BES under two conditions: with and without the addition of N-acyl-homoserine lactones (AHLs) signaling molecules. In comparison to the control group, the AHL-treated group exhibited an increase in maximum output voltage from 340 to 489.67 mV, alongside a notable enhancement in SMX removal efficiency over 120 h ranging from 14.65% to 15.76%. Analyses of the live and dead cells and extracellular polymeric substances (EPS) composition revealed that following AHLs addition, both the ratio of live to dead cells and protein content within EPS increased by 12.66% and 74.37%, respectively. Furthermore, microbial community structure analysis indicated that after AHLs supplementation, there was a marked increase in the abundance of electroactive microorganisms as well as antibiotic-degrading and nitrogen-removing bacteria. Notably, <i>Klebsiella</i> - characterised by its electroactivity along with antibiotic degradation and nitrogen removal capabilities - exhibited a relative abundance reaching 56.84% in AHL, reflecting an increase of 28.31% compared to Blank; additionally, electroactive bacteria <i>Dysgonomonas</i> showed a relative abundance rise of 2.49%. Collectively, these findings suggested that enhancements in SMX removal efficiency upon AHLs addition were primarily driven by improvements in electrochemical performance coupled with alterations in microbial community structure.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The strength and hydraulic conductivity characteristics of sewage sludge ash and natural soil mixtures - a sustainable alternate landfill liner material.","authors":"Chuancheng Zhang, Jiesheng Liu, Xiang He","doi":"10.1080/09593330.2024.2421463","DOIUrl":"https://doi.org/10.1080/09593330.2024.2421463","url":null,"abstract":"<p><p>This paper examines the feasibility of the natural soil and sewage sludge ash (SSA) mixtures, which satisfy the criteria to be used as landfill liners. The effect of SSA content on hydraulic conductivity and strength characteristics of natural soil and SSA mixtures has been investigated through a series of laboratory tests. The results demonstrate that mixtures exhibit an increase in both hydrodynamic diffusion coefficient and strength with the increasing SSA content. With the content of SSA from 0% to 5%, the values of the hydrodynamic diffusion coefficient (<math><mi>D</mi></math>) ranged from 3.5 × 10<sup>-10</sup> to 15 × 10<sup>-10</sup> cm<sup>2</sup>/s. The increase in the hydrodynamic diffusion coefficient is minor for low SSA content and significant for SSA content exceeding 5%. The inclusion of 5% SSA content results in a hydrodynamic diffusion coefficient that is approximately three times higher than that observed in natural soil. The results were obtained from soil triaxial tests, revealing that the mixtures containing SSA exhibited a significant increase in both the initial tangent modulus and the ultimate principal stress difference compared to those of natural soil. The SSA content with the highest value exhibits maximum initial tangent modulus and ultimate principal stress. The comprehensive analysis of the strength and hydraulic diffusion conductivity of the mixtures demonstrates that the incorporation of 3% SSA results in a significant enhancement in strength, while marginally increasing hydrodynamic diffusion coefficients. Therefore, it can be inferred that the utilization of mixtures containing 3% SSA content as a liner material is suitable.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of dew harvesting as a sustainable water source and air quality indicator: a case study of Dhanbad, Jharkhand, India.","authors":"Shweta Singh, Suresh Pandian Elumalai, Sasmita Chand, Prangya Ranjan Rout","doi":"10.1080/09593330.2024.2422552","DOIUrl":"https://doi.org/10.1080/09593330.2024.2422552","url":null,"abstract":"<p><p>Dew formation takes place when atmospheric water vapor condenses on the surface which cools down due to radiation deficit. As it is a local phenomenon, its study gives information about the pollutants present in the atmosphere. Also, since dew formation is a natural phenomenon, and involves passive cooling, this can be a potential method for atmospheric water harvesting. The main intention of this present research work was the collection of dew samples and their analysis for yield and chemical composition. Dew samples were collected on a self-fabricated dew collection set up during the winter season. In total 30 dew samples were collected and analyzed for ionic constituents. The results were then compared to those of rain samples. The pH of dew was found to be in the range of 7-8.7, showing the neutral to alkaline nature of dew. Ionic compositions were higher in dew than in rain. While sulfate largely contributed to the ion composition of dew, nitrate was the least contributing ion. The average concentration for sulfate and nitrate in dew were found to be 0.55 and 0.03 meq/L, respectively. The average yield of dew was found to be 0.13L/m<sup>2</sup>. This yield value from the simplest of collection set-up ensures that dew can be considered as the potential water source with advanced condensing material and passive/active cooling in arid and semi-arid regions.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}