{"title":"商品猪场猪粪微生物组和抗性组及其在放牧土壤中的应用综述。","authors":"Maria Eduarda Dias, Gabriela Merker Breyer, Mariana Costa Torres, Camila Rosana Wuaden, Raquel Rebelatto, Jalusa Deon Kich, Marcio Dorn, Franciele Maboni Siqueira","doi":"10.1080/09593330.2025.2566429","DOIUrl":null,"url":null,"abstract":"<p><p>The environmental spread of antimicrobial resistance genes (ARGs) through the use of animal manure in agriculture has become a significant concern. This study investigated the impact of applying swine manure treated through biodigestion on the spread of ARGs in agricultural soils in the Midwest region of Brazil. Samples of untreated and treated manure, fertilized soil, and unfertilized soil were collected from three piglet production units. Bacterial communities and ARGs were characterized through metagenomic sequencing and bioinformatics. Bacterial profiles in fertilized and unfertilized soils were highly similar across all farms. In contrast, biodigestion reduced the total number of ARGs in treated manure. Of the 399 ARGs detected in fertilized soils, 67% were also found in unfertilized soils, and 12% were shared exclusively with treated manure. The presence of numerous ARGs in unfertilized soils highlights the role of environmental dissemination routes, such as runoff, dust, or wildlife, in shaping soil resistomes even in areas without manure application. These findings suggest a stable bacterial and resistome profile in soils, regardless of manure application. Although antimicrobial residues were not evaluated, the results reinforce the need for responsible antibiotic use and effective manure management to minimize environmental ARG dissemination.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-11"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of the microbiome and resistome of swine manure in commercial piglet farms and its application in grazing soils.\",\"authors\":\"Maria Eduarda Dias, Gabriela Merker Breyer, Mariana Costa Torres, Camila Rosana Wuaden, Raquel Rebelatto, Jalusa Deon Kich, Marcio Dorn, Franciele Maboni Siqueira\",\"doi\":\"10.1080/09593330.2025.2566429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The environmental spread of antimicrobial resistance genes (ARGs) through the use of animal manure in agriculture has become a significant concern. This study investigated the impact of applying swine manure treated through biodigestion on the spread of ARGs in agricultural soils in the Midwest region of Brazil. Samples of untreated and treated manure, fertilized soil, and unfertilized soil were collected from three piglet production units. Bacterial communities and ARGs were characterized through metagenomic sequencing and bioinformatics. Bacterial profiles in fertilized and unfertilized soils were highly similar across all farms. In contrast, biodigestion reduced the total number of ARGs in treated manure. Of the 399 ARGs detected in fertilized soils, 67% were also found in unfertilized soils, and 12% were shared exclusively with treated manure. The presence of numerous ARGs in unfertilized soils highlights the role of environmental dissemination routes, such as runoff, dust, or wildlife, in shaping soil resistomes even in areas without manure application. These findings suggest a stable bacterial and resistome profile in soils, regardless of manure application. Although antimicrobial residues were not evaluated, the results reinforce the need for responsible antibiotic use and effective manure management to minimize environmental ARG dissemination.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2566429\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2566429","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Overview of the microbiome and resistome of swine manure in commercial piglet farms and its application in grazing soils.
The environmental spread of antimicrobial resistance genes (ARGs) through the use of animal manure in agriculture has become a significant concern. This study investigated the impact of applying swine manure treated through biodigestion on the spread of ARGs in agricultural soils in the Midwest region of Brazil. Samples of untreated and treated manure, fertilized soil, and unfertilized soil were collected from three piglet production units. Bacterial communities and ARGs were characterized through metagenomic sequencing and bioinformatics. Bacterial profiles in fertilized and unfertilized soils were highly similar across all farms. In contrast, biodigestion reduced the total number of ARGs in treated manure. Of the 399 ARGs detected in fertilized soils, 67% were also found in unfertilized soils, and 12% were shared exclusively with treated manure. The presence of numerous ARGs in unfertilized soils highlights the role of environmental dissemination routes, such as runoff, dust, or wildlife, in shaping soil resistomes even in areas without manure application. These findings suggest a stable bacterial and resistome profile in soils, regardless of manure application. Although antimicrobial residues were not evaluated, the results reinforce the need for responsible antibiotic use and effective manure management to minimize environmental ARG dissemination.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current