{"title":"超氧离子诱导自絮凝抑制聚氯乙烯微塑料降解过程中聚氯乙烯纳米塑料的释放。","authors":"Yunjiang Zhao, Xin Li, Yiran Qiu, Haiming Yang, Dong Yan, Xin Geng, Lixiang Li, Maowei Ju","doi":"10.1080/09593330.2025.2562602","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) and nanoplastics (NPs) have attracted widespread attention due to their detrimental effects on the ecosystem and human health. NPs, which are smaller and more harmful than MPs, are generated during the degradation of MPs. The present study aimed to inhibit the release of polyvinylchloride NPs (PVC-NPs) generated during the degradation of PCV-MPs, by using Ultraviolet/ sulphite (UV/SO<sub>3</sub><sup>2-</sup>) in the presence of O<sub>2</sub> (UV/SO<sub>3</sub><sup>2-</sup>/O<sub>2</sub>). Under optimal conditions, the dechlorination rate and weight loss of PVC-MP were 72.4% and 61.7%, respectively. The chemical changes of the treated PVC-MPs and the intermediates during the degradation of PVC-MPs were investigated. It was confirmed that PVC-NPs form during the degradation PVC-MPs. In addition, PVC-NPs were successfully removed from the water by superoxide ion (O<sub>2</sub><sup>-</sup>)-induced self-flocculation, resulting in a reduced release of PVC-NPs into the water. The weight of the self-flocculation containing PVC-NPs was 5.2 mg. Self-flocculation was investigated by scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Numerous C-O-C groups were identified in the self-flocculation. The results indicate a potential process for the removal of PVC-NPs by self-flocculation. This study introduces a new method of degradation of PVC-MPs while simultaneously reducing the release of PVC-NPs.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibiting the release of polyvinyl chloride nanoplastics via superoxide ion-induced self-flocculation during polyvinyl chloride microplastics degradation.\",\"authors\":\"Yunjiang Zhao, Xin Li, Yiran Qiu, Haiming Yang, Dong Yan, Xin Geng, Lixiang Li, Maowei Ju\",\"doi\":\"10.1080/09593330.2025.2562602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics (MPs) and nanoplastics (NPs) have attracted widespread attention due to their detrimental effects on the ecosystem and human health. NPs, which are smaller and more harmful than MPs, are generated during the degradation of MPs. The present study aimed to inhibit the release of polyvinylchloride NPs (PVC-NPs) generated during the degradation of PCV-MPs, by using Ultraviolet/ sulphite (UV/SO<sub>3</sub><sup>2-</sup>) in the presence of O<sub>2</sub> (UV/SO<sub>3</sub><sup>2-</sup>/O<sub>2</sub>). Under optimal conditions, the dechlorination rate and weight loss of PVC-MP were 72.4% and 61.7%, respectively. The chemical changes of the treated PVC-MPs and the intermediates during the degradation of PVC-MPs were investigated. It was confirmed that PVC-NPs form during the degradation PVC-MPs. In addition, PVC-NPs were successfully removed from the water by superoxide ion (O<sub>2</sub><sup>-</sup>)-induced self-flocculation, resulting in a reduced release of PVC-NPs into the water. The weight of the self-flocculation containing PVC-NPs was 5.2 mg. Self-flocculation was investigated by scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Numerous C-O-C groups were identified in the self-flocculation. The results indicate a potential process for the removal of PVC-NPs by self-flocculation. This study introduces a new method of degradation of PVC-MPs while simultaneously reducing the release of PVC-NPs.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2562602\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2562602","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Inhibiting the release of polyvinyl chloride nanoplastics via superoxide ion-induced self-flocculation during polyvinyl chloride microplastics degradation.
Microplastics (MPs) and nanoplastics (NPs) have attracted widespread attention due to their detrimental effects on the ecosystem and human health. NPs, which are smaller and more harmful than MPs, are generated during the degradation of MPs. The present study aimed to inhibit the release of polyvinylchloride NPs (PVC-NPs) generated during the degradation of PCV-MPs, by using Ultraviolet/ sulphite (UV/SO32-) in the presence of O2 (UV/SO32-/O2). Under optimal conditions, the dechlorination rate and weight loss of PVC-MP were 72.4% and 61.7%, respectively. The chemical changes of the treated PVC-MPs and the intermediates during the degradation of PVC-MPs were investigated. It was confirmed that PVC-NPs form during the degradation PVC-MPs. In addition, PVC-NPs were successfully removed from the water by superoxide ion (O2-)-induced self-flocculation, resulting in a reduced release of PVC-NPs into the water. The weight of the self-flocculation containing PVC-NPs was 5.2 mg. Self-flocculation was investigated by scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Numerous C-O-C groups were identified in the self-flocculation. The results indicate a potential process for the removal of PVC-NPs by self-flocculation. This study introduces a new method of degradation of PVC-MPs while simultaneously reducing the release of PVC-NPs.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current