人工智能优化曝气控制在SBR系统:对碳中性废水处理的逆支持向量机框架。

IF 2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Qiu Cheng, Zhou Yang, Yang Guodong, Li Ya, Luo Le, Wang Xiuying, Wu Juzhen, Wang Mingxi, Li Qianglin
{"title":"人工智能优化曝气控制在SBR系统:对碳中性废水处理的逆支持向量机框架。","authors":"Qiu Cheng, Zhou Yang, Yang Guodong, Li Ya, Luo Le, Wang Xiuying, Wu Juzhen, Wang Mingxi, Li Qianglin","doi":"10.1080/09593330.2025.2562373","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes an inverse support vector machine (ISVM) framework to optimise aeration control in a sequencing batch reactor(SBR), addressing the balancing of energy efficiency and regulatory compliance in wastewater treatment. By integrating data-driven modelling with constrained optimisation, the method dynamically adjusts aeration rate to maintain effluent NH<sub>3</sub>-N concentrations below 5 mg/L while minimising energy consumption. A support vector machine (SVM) establishes input-output correlations between process parameters (influent NH<sub>3</sub>-N, ORP, conductivity, aeration rate) and effluent NH<sub>3</sub>-N concentration, enabling the ISVM to resolve constraint-driven aeration rate optimisation. Experimental validation across 20 operational cycles demonstrated a 20.3% reduction in energy usage compared to conventional fixed-rate aeration, achieving 95% compliance with discharge standards. The framework's penalty-based optimisation and gradient clipping mechanisms ensure stability in applications, overcoming limitations of traditional PID controllers and mechanistic models. This work advances intelligent control strategies for sustainable wastewater management, providing a constraint-aware optimisation template for environmental engineering systems.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Optimised aeration control in SBR systems: an inverse SVM framework toward carbon-neutral wastewater treatment.\",\"authors\":\"Qiu Cheng, Zhou Yang, Yang Guodong, Li Ya, Luo Le, Wang Xiuying, Wu Juzhen, Wang Mingxi, Li Qianglin\",\"doi\":\"10.1080/09593330.2025.2562373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes an inverse support vector machine (ISVM) framework to optimise aeration control in a sequencing batch reactor(SBR), addressing the balancing of energy efficiency and regulatory compliance in wastewater treatment. By integrating data-driven modelling with constrained optimisation, the method dynamically adjusts aeration rate to maintain effluent NH<sub>3</sub>-N concentrations below 5 mg/L while minimising energy consumption. A support vector machine (SVM) establishes input-output correlations between process parameters (influent NH<sub>3</sub>-N, ORP, conductivity, aeration rate) and effluent NH<sub>3</sub>-N concentration, enabling the ISVM to resolve constraint-driven aeration rate optimisation. Experimental validation across 20 operational cycles demonstrated a 20.3% reduction in energy usage compared to conventional fixed-rate aeration, achieving 95% compliance with discharge standards. The framework's penalty-based optimisation and gradient clipping mechanisms ensure stability in applications, overcoming limitations of traditional PID controllers and mechanistic models. This work advances intelligent control strategies for sustainable wastewater management, providing a constraint-aware optimisation template for environmental engineering systems.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2562373\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2562373","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个逆支持向量机(ISVM)框架来优化顺序间歇反应器(SBR)的曝气控制,解决废水处理中能源效率和法规遵从性的平衡问题。通过将数据驱动模型与约束优化相结合,该方法可以动态调整曝气速率,以保持出水NH3-N浓度低于5 mg/L,同时最大限度地减少能源消耗。支持向量机(SVM)建立了工艺参数(进水NH3-N、ORP、电导率、曝气率)与出水NH3-N浓度之间的输入-输出相关性,使ISVM能够解决约束驱动的曝气率优化问题。20个运行周期的实验验证表明,与传统的固定速率曝气相比,能耗降低了20.3%,达到了95%的排放标准。该框架的基于惩罚的优化和梯度裁剪机制确保了应用的稳定性,克服了传统PID控制器和机制模型的局限性。这项工作推进了可持续废水管理的智能控制策略,为环境工程系统提供了约束感知优化模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-Optimised aeration control in SBR systems: an inverse SVM framework toward carbon-neutral wastewater treatment.

This study proposes an inverse support vector machine (ISVM) framework to optimise aeration control in a sequencing batch reactor(SBR), addressing the balancing of energy efficiency and regulatory compliance in wastewater treatment. By integrating data-driven modelling with constrained optimisation, the method dynamically adjusts aeration rate to maintain effluent NH3-N concentrations below 5 mg/L while minimising energy consumption. A support vector machine (SVM) establishes input-output correlations between process parameters (influent NH3-N, ORP, conductivity, aeration rate) and effluent NH3-N concentration, enabling the ISVM to resolve constraint-driven aeration rate optimisation. Experimental validation across 20 operational cycles demonstrated a 20.3% reduction in energy usage compared to conventional fixed-rate aeration, achieving 95% compliance with discharge standards. The framework's penalty-based optimisation and gradient clipping mechanisms ensure stability in applications, overcoming limitations of traditional PID controllers and mechanistic models. This work advances intelligent control strategies for sustainable wastewater management, providing a constraint-aware optimisation template for environmental engineering systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信