Environmental microbiology最新文献

筛选
英文 中文
Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient 永冻土融化梯度上的病毒生态学和 7 年时间动态。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-08-05 DOI: 10.1111/1462-2920.16665
Christine L. Sun, Akbar Adjie Pratama, Maria Consuelo Gazitúa, Dylan Cronin, Bridget B. McGivern, James M. Wainaina, Dean R. Vik, Ahmed A. Zayed, Benjamin Bolduc, IsoGenie Project Field Teams 2010-2017, the IsoGenie and EMERGE Projects Coordinators, Kelly C. Wrighton, Virginia I. Rich, Matthew B. Sullivan
{"title":"Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient","authors":"Christine L. Sun,&nbsp;Akbar Adjie Pratama,&nbsp;Maria Consuelo Gazitúa,&nbsp;Dylan Cronin,&nbsp;Bridget B. McGivern,&nbsp;James M. Wainaina,&nbsp;Dean R. Vik,&nbsp;Ahmed A. Zayed,&nbsp;Benjamin Bolduc,&nbsp;IsoGenie Project Field Teams 2010-2017, the IsoGenie and EMERGE Projects Coordinators,&nbsp;Kelly C. Wrighton,&nbsp;Virginia I. Rich,&nbsp;Matthew B. Sullivan","doi":"10.1111/1462-2920.16665","DOIUrl":"10.1111/1462-2920.16665","url":null,"abstract":"<p>Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts <i>in silico</i> and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of <i>Candidatus</i> Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 8","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mesophilic relative of common glacier algae, Ancylonema palustre sp. nov., provides insights into the induction of vacuolar pigments in zygnematophytes 一种常见冰川藻类的嗜中性亲缘植物 Ancylonema palustre sp.
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-30 DOI: 10.1111/1462-2920.16680
Anna Busch, Emilia Slominski, Daniel Remias, Lenka Procházková, Sebastian Hess
{"title":"A mesophilic relative of common glacier algae, Ancylonema palustre sp. nov., provides insights into the induction of vacuolar pigments in zygnematophytes","authors":"Anna Busch,&nbsp;Emilia Slominski,&nbsp;Daniel Remias,&nbsp;Lenka Procházková,&nbsp;Sebastian Hess","doi":"10.1111/1462-2920.16680","DOIUrl":"10.1111/1462-2920.16680","url":null,"abstract":"<p>The green algae of the genus <i>Ancylonema</i>, which belong to the zygnematophytes, are prevalent colonizers of glaciers worldwide. They display a striking reddish-brown pigmentation in their natural environment, due to vacuolar compounds related to gallic acid. This pigmentation causes glacier darkening when these algae bloom, leading to increased melting rates. The <i>Ancylonema</i> species known so far are true psychrophiles, which hinders experimental work and limits our understanding of these algae. For instance, the biosynthesis, triggering factors, and biological function of <i>Ancylonema</i>'s secondary pigments remain unknown. In this study, we introduce a mesophilic <i>Ancylonema</i> species, <i>A. palustre</i> sp. nov., from temperate moorlands. This species forms the sister lineage to all known psychrophilic strains. Despite its morphological similarity to the latter, it exhibits unique autecological and photophysiological characteristics. It allows us to describe vegetative and sexual cellular processes in great detail. We also conducted experimental tests for abiotic factors that induce the secondary pigments of zygnematophytes. We found that low nutrient conditions combined with ultraviolet B radiation result in vacuolar pigmentation, suggesting a sunscreen function. Our thriving, bacteria-free cultures of <i>Ancylonema palustre</i> will enable comparative genomic studies of mesophilic and extremophilic zygnematophytes. These studies may provide insights into how <i>Ancylonema</i> species colonized the world's glaciers.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 8","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16680","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microdiversity in marine pelagic ammonia-oxidizing archaeal populations in a Mediterranean long-read metagenome 地中海长读数元基因组中海洋浮游氨氧化古细菌种群的微观多样性。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-30 DOI: 10.1111/1462-2920.16684
Pablo Suárez-Moo, Jose M. Haro-Moreno, Francisco Rodriguez-Valera
{"title":"Microdiversity in marine pelagic ammonia-oxidizing archaeal populations in a Mediterranean long-read metagenome","authors":"Pablo Suárez-Moo,&nbsp;Jose M. Haro-Moreno,&nbsp;Francisco Rodriguez-Valera","doi":"10.1111/1462-2920.16684","DOIUrl":"10.1111/1462-2920.16684","url":null,"abstract":"<p>The knowledge of the different population-level processes operating within a species, and the genetic variability of the individual prokaryotic genomes, is key to understanding the adaptability of microbial populations. Here, we characterized the flexible genome of ammonia-oxidizing archaeal (AOA) populations using a metagenomic recruitment approach and long-read (PacBio HiFi) metagenomic sequencing. In the lower photic zone of the western Mediterranean Sea (75 m deep), the genomes <i>Nitrosopelagicus brevis</i> CN25 and <i>Nitrosopumilus catalinensis</i> SPOT1 had the highest recruitment values among available complete AOA genomes. They were used to analyse the diversity of flexible genes (variable from strain to strain) by examining the long-reads located within the flexible genomic islands (fGIs) identified by their under-recruitment. Both AOA genomes had a large fGI involved in the glycosylation of exposed structures, highly variable, and rich in glycosyltransferases. <i>N. brevis</i> had two fGIs related to the transport of phosphorus and ammonium respectively. <i>N. catalinensis</i> had fGIs involved in phosphorus transportation and metal uptake. A fGI5 previously reported as ‘unassigned function’ in <i>N. brevis</i> could be associated with defense. These findings demonstrate that the microdiversity of marine microbe populations, including AOA, can be effectively characterized using an approach that incorporates third-generation sequencing metagenomics.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 8","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient, context-dependent fitness costs accompanying viral resistance in isolates of the marine microalga Micromonas sp. (class Mamiellophyceae) 海洋微藻小龙虾(Micromonas sp.,Mamiellophyceae 类)分离物的病毒抗性伴随着瞬时的、依赖环境的适应性成本。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-30 DOI: 10.1111/1462-2920.16686
Anamica Bedi de Silva, Shawn W. Polson, Christopher R. Schvarcz, Grieg F. Steward, Kyle F. Edwards
{"title":"Transient, context-dependent fitness costs accompanying viral resistance in isolates of the marine microalga Micromonas sp. (class Mamiellophyceae)","authors":"Anamica Bedi de Silva,&nbsp;Shawn W. Polson,&nbsp;Christopher R. Schvarcz,&nbsp;Grieg F. Steward,&nbsp;Kyle F. Edwards","doi":"10.1111/1462-2920.16686","DOIUrl":"10.1111/1462-2920.16686","url":null,"abstract":"<p>Marine microbes are important in biogeochemical cycling, but the nature and magnitude of their contributions are influenced by their associated viruses. In the presence of a lytic virus, cells that have evolved resistance to infection have an obvious fitness advantage over relatives that remain susceptible. However, susceptible cells remain extant in the wild, implying that the evolution of a fitness advantage in one dimension (virus resistance) must be accompanied by a fitness cost in another dimension. Identifying costs of resistance is challenging because fitness is context-dependent. We examined the context dependence of fitness costs in isolates of the picophytoplankton genus <i>Micromonas</i> and their co-occurring dsDNA viruses using experimental evolution. After generating 88 resistant lineages from two ancestral <i>Micromonas</i> strains, each challenged with one of four distinct viral strains, we found resistance led to a 46% decrease in mean growth rate under high irradiance and a 19% decrease under low. After a year in culture, the experimentally selected lines remained resistant, but fitness costs had attenuated. Our results suggest that the cost of resistance in <i>Micromonas</i> is dependent on environmental conditions and the duration of population adaptation, illustrating the dynamic nature of fitness costs of viral resistance among marine protists.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 8","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assembly and comparative analyses of the Geosiphon pyriformis metagenome 组装和比较分析Geosiphon pyriformis元基因组。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-26 DOI: 10.1111/1462-2920.16681
Essam Sorwar, Jordana Inacio Nascimento Oliveira, Mathu Malar C., Manuela Krüger, Nicolas Corradi
{"title":"Assembly and comparative analyses of the Geosiphon pyriformis metagenome","authors":"Essam Sorwar,&nbsp;Jordana Inacio Nascimento Oliveira,&nbsp;Mathu Malar C.,&nbsp;Manuela Krüger,&nbsp;Nicolas Corradi","doi":"10.1111/1462-2920.16681","DOIUrl":"10.1111/1462-2920.16681","url":null,"abstract":"<p><i>Geosiphon pyriformis</i>, a representative of the fungal sub-phylum Glomeromycotina, is unique in its endosymbiosis with cyanobacteria within a fungal cell. This symbiotic relationship occurs in bladders containing nuclei of <i>G. pyriformis</i>, Mollicutes-like bacterial endosymbionts (MRE), and photosynthetically active and dividing cells of <i>Nostoc punctiforme</i>. Recent genome analyses have shed light on the biology of <i>G. pyriformis</i>, but the genome content and biology of its endosymbionts remain unexplored. To fill this gap, we gathered and examined metagenomic data from the bladders of <i>G. pyriformis</i>, where <i>N. punctiforme</i> and MRE are located. This ensures that our analyses are focused on the organs directly involved in the symbiosis. By comparing this data with the genetic information of related cyanobacteria and MREs from other species of Arbuscular Mycorrhizal Fungi, we aimed to reveal the genetic content of these organisms and understand how they interact at a genetic level to establish a symbiotic relationship. Our analyses uncovered significant gene expansions in the <i>Nostoc</i> endosymbiont, particularly in mobile elements and genes potentially involved in xenobiotic degradation. We also confirmed that the MRE of <i>Glomeromycotina</i> are monophyletic and possess a highly streamlined genome. These genomes show dramatic differences in both structure and content, including the presence of enzymes involved in environmental sensing and stress response.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms 基于基因组的假交替单胞菌属分类分析揭示了异型同物异名。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-23 DOI: 10.1111/1462-2920.16672
Patrick Videau, Maximillian D. Shlafstein, David K. Oline, Scott A. Givan, Linda Fleet Chapman, Wendy K. Strangman, Richard L. Hahnke, Jimmy H. Saw, Blake Ushijima
{"title":"Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms","authors":"Patrick Videau,&nbsp;Maximillian D. Shlafstein,&nbsp;David K. Oline,&nbsp;Scott A. Givan,&nbsp;Linda Fleet Chapman,&nbsp;Wendy K. Strangman,&nbsp;Richard L. Hahnke,&nbsp;Jimmy H. Saw,&nbsp;Blake Ushijima","doi":"10.1111/1462-2920.16672","DOIUrl":"10.1111/1462-2920.16672","url":null,"abstract":"<p>The <i>Pseudoalteromonas</i> genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several <i>Pseudoalteromonas</i> species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA–DNA hybridization, average amino acid identity, and the difference in G + C% between <i>Pseudoalteromonas</i> type strains with publicly available genomes. The genome of the <i>Pseudoalteromonas elyakovii</i> type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six <i>Pseudoalteromonas</i> species, namely <i>P. mariniglutinosa</i>, <i>P. donghaensis</i>, <i>P. maricaloris</i>, <i>P. elyakovii</i>, <i>P. profundi</i>, and <i>P. issachenkonii</i>, should be reclassified as later heterotypic synonyms of the following validly published species: <i>P. haloplanktis</i>, <i>P. lipolytica</i>, <i>P. flavipulchra</i>, <i>P. distincta</i>, <i>P. gelatinilytica</i>, and <i>P. tetraodonis</i>. Furthermore, two names without valid standing, ‘<i>P. telluritireducens</i>’ and ‘<i>P. spiralis</i>’, should be associated with the validly published <i>Pseudoalteromonas</i> species <i>P. agarivorans</i> and <i>P. tetraodonis</i>, respectively.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical confinement enhances surface exploration in bacterial twitching motility 垂直限制增强了细菌抽动运动的表面探索能力。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-22 DOI: 10.1111/1462-2920.16679
Xiao Chen, Rongjing Zhang, Junhua Yuan
{"title":"Vertical confinement enhances surface exploration in bacterial twitching motility","authors":"Xiao Chen,&nbsp;Rongjing Zhang,&nbsp;Junhua Yuan","doi":"10.1111/1462-2920.16679","DOIUrl":"10.1111/1462-2920.16679","url":null,"abstract":"<p>Bacteria are often found in environments where space is limited, and they attach themselves to surfaces. One common form of movement on these surfaces is bacterial twitching motility, which is powered by the extension and retraction of type IV pili. Although twitching motility in unrestricted conditions has been extensively studied, the effects of spatial confinement on this behaviour are not well understood. In this study, we explored the diffusive properties of individual twitching <i>Pseudomonas aeruginosa</i> cells in spatially confined conditions. We achieved this by placing the bacteria between layers of agarose and glass, and then tracking the long-term twitching motility of individual cells. Interestingly, we found that while confinement reduced the immediate speed of twitching, it paradoxically increased diffusion. Through a combination of mechanical and geometrical analysis, as well as numerical simulations, we showed that this increase in diffusion could be attributed to mechanical factors. The constraint imposed by the agarose altered the diffusion pattern of the bacteria from normal to superdiffusion. These findings provide valuable insights into the motile behaviour of bacteria in confined environments.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When the going gets tough, the tough get going—Novel bacterial AAA+ disaggregases provide extreme heat resistance 艰难困苦,玉汝于成--新型 AAA+ 细菌分解物具有极强的耐热性。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-22 DOI: 10.1111/1462-2920.16677
Valentin Bohl, Axel Mogk
{"title":"When the going gets tough, the tough get going—Novel bacterial AAA+ disaggregases provide extreme heat resistance","authors":"Valentin Bohl,&nbsp;Axel Mogk","doi":"10.1111/1462-2920.16677","DOIUrl":"10.1111/1462-2920.16677","url":null,"abstract":"<p>Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the <i>A</i>TPase <i>a</i>ssociated with diverse cellular <i>a</i>ctivities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel <i>A</i>TPase <i>a</i>ssociated with diverse cellular <i>a</i>ctivities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental control and metabolic strategies of organic-matter-responsive bacterioplankton in the Weddell Sea (Antarctica) 威德尔海(南极洲)有机物质响应型浮游细菌的环境控制和代谢策略。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-18 DOI: 10.1111/1462-2920.16675
Judith Piontek, Christiane Hassenrück, Birthe Zäncker, Klaus Jürgens
{"title":"Environmental control and metabolic strategies of organic-matter-responsive bacterioplankton in the Weddell Sea (Antarctica)","authors":"Judith Piontek,&nbsp;Christiane Hassenrück,&nbsp;Birthe Zäncker,&nbsp;Klaus Jürgens","doi":"10.1111/1462-2920.16675","DOIUrl":"10.1111/1462-2920.16675","url":null,"abstract":"<p>Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in <i>Bacteroidia</i> and <i>Gammaproteobacteria</i>, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured <i>Bacteroidia</i>, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive <i>Gammaproteobacteria</i> were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16675","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The underground world of plant disease: Rhizosphere dysbiosis reduces above-ground plant resistance to bacterial leaf spot and alters plant transcriptome 植物病害的地下世界:根圈菌群失调降低了地面植物对细菌性叶斑病的抵抗力,并改变了植物转录组。
IF 4.3 2区 生物学
Environmental microbiology Pub Date : 2024-07-15 DOI: 10.1111/1462-2920.16676
Toi Ketehouli, Josephine Pasche, Victor Hugo Buttrós, Erica M. Goss, Samuel J. Martins
{"title":"The underground world of plant disease: Rhizosphere dysbiosis reduces above-ground plant resistance to bacterial leaf spot and alters plant transcriptome","authors":"Toi Ketehouli,&nbsp;Josephine Pasche,&nbsp;Victor Hugo Buttrós,&nbsp;Erica M. Goss,&nbsp;Samuel J. Martins","doi":"10.1111/1462-2920.16676","DOIUrl":"10.1111/1462-2920.16676","url":null,"abstract":"<p>Just as the human gut microbiome is colonized by a variety of microbes, so too is the rhizosphere of plants. An imbalance in this microbial community, known as dysbiosis, can have a negative impact on plant health. This study sought to explore the effect of rhizosphere dysbiosis on the health of tomato plants (<i>Solanum lycopersicum</i> L.), using them and the foliar bacterial spot pathogen <i>Xanthomonas perforans</i> as model organisms. The rhizospheres of 3-week-old tomato plants were treated with either streptomycin or water as a control, and then spray-inoculated with <i>X. perforans</i> after 24 h. Half of the plants that were treated with both streptomycin and <i>X. perforans</i> received soil microbiome transplants from uninfected plant donors 48 h after the streptomycin was applied. The plants treated with streptomycin showed a 26% increase in disease severity compared to those that did not receive the antibiotic. However, the plants that received the soil microbiome transplant exhibited an intermediate level of disease severity. The antibiotic-treated plants demonstrated a reduced abundance of rhizobacterial taxa such as Cyanobacteria from the genus <i>Cylindrospermum</i>. They also showed a down-regulation of genes related to plant primary and secondary metabolism, and an up-regulation of plant defence genes associated with induced systemic resistance. This study highlights the vital role that beneficial rhizosphere microbes play in disease resistance, even against foliar pathogens.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16676","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信