Natalia Llopis Monferrer, Sarah Romac, Manon Laget, Yasuhide Nakamura, Tristan Biard, Miguel M. Sandin
{"title":"放射菌的凝胶基质是一种应对少营养的策略吗?","authors":"Natalia Llopis Monferrer, Sarah Romac, Manon Laget, Yasuhide Nakamura, Tristan Biard, Miguel M. Sandin","doi":"10.1111/1462-2920.70098","DOIUrl":null,"url":null,"abstract":"<p>Radiolaria are heterotrophic protists abundant in the world's oceans, playing important roles in biogeochemical cycles. Some host photosynthetic algae, contributing to primary production. Such mixotrophic behaviour is believed to explain their success in oligotrophic waters, notably Collodaria, exclusively mixotrophic radiolarians within a gelatinous matrix. Yet, understanding of Radiolaria ecology is limited to direct observations, as they have so far withstood reproduction in culture and lack genome data. Sampling oligotrophic California Current revealed abundant, rarely observed Nassellaria of the genus <i>Phlebarachnium</i>, characterised to live within a gelatinous matrix. Phylogenetic reconstruction of ribosomal DNA suggests that distantly related Nassellaria lineages independently developed the ability to produce a gelatinous matrix ~150 million years ago. By matching physical samples with genetic data, we identified these rarely observed organisms in global datasets, revealing their affinity for oligotrophic conditions. Co-occurrence networks showed distinct biogeography patterns for gelatinous matrix-forming Radiolaria compared to those without. Results suggest the matrix might be an adaptation to oligotrophic waters, increasing the effective volume, favouring prey capture, and creating a larger microenvironment for symbionts, thus promoting ecological success in nutrient-depleted waters. This study advances our understanding of the adaptation of poorly known eukaryotic groups, specifically when evolution occurs independently across lineages.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70098","citationCount":"0","resultStr":"{\"title\":\"Is the Gelatinous Matrix of Nassellaria (Radiolaria) a Strategy for Coping With Oligotrophy?\",\"authors\":\"Natalia Llopis Monferrer, Sarah Romac, Manon Laget, Yasuhide Nakamura, Tristan Biard, Miguel M. Sandin\",\"doi\":\"10.1111/1462-2920.70098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radiolaria are heterotrophic protists abundant in the world's oceans, playing important roles in biogeochemical cycles. Some host photosynthetic algae, contributing to primary production. Such mixotrophic behaviour is believed to explain their success in oligotrophic waters, notably Collodaria, exclusively mixotrophic radiolarians within a gelatinous matrix. Yet, understanding of Radiolaria ecology is limited to direct observations, as they have so far withstood reproduction in culture and lack genome data. Sampling oligotrophic California Current revealed abundant, rarely observed Nassellaria of the genus <i>Phlebarachnium</i>, characterised to live within a gelatinous matrix. Phylogenetic reconstruction of ribosomal DNA suggests that distantly related Nassellaria lineages independently developed the ability to produce a gelatinous matrix ~150 million years ago. By matching physical samples with genetic data, we identified these rarely observed organisms in global datasets, revealing their affinity for oligotrophic conditions. Co-occurrence networks showed distinct biogeography patterns for gelatinous matrix-forming Radiolaria compared to those without. Results suggest the matrix might be an adaptation to oligotrophic waters, increasing the effective volume, favouring prey capture, and creating a larger microenvironment for symbionts, thus promoting ecological success in nutrient-depleted waters. This study advances our understanding of the adaptation of poorly known eukaryotic groups, specifically when evolution occurs independently across lineages.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70098\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Is the Gelatinous Matrix of Nassellaria (Radiolaria) a Strategy for Coping With Oligotrophy?
Radiolaria are heterotrophic protists abundant in the world's oceans, playing important roles in biogeochemical cycles. Some host photosynthetic algae, contributing to primary production. Such mixotrophic behaviour is believed to explain their success in oligotrophic waters, notably Collodaria, exclusively mixotrophic radiolarians within a gelatinous matrix. Yet, understanding of Radiolaria ecology is limited to direct observations, as they have so far withstood reproduction in culture and lack genome data. Sampling oligotrophic California Current revealed abundant, rarely observed Nassellaria of the genus Phlebarachnium, characterised to live within a gelatinous matrix. Phylogenetic reconstruction of ribosomal DNA suggests that distantly related Nassellaria lineages independently developed the ability to produce a gelatinous matrix ~150 million years ago. By matching physical samples with genetic data, we identified these rarely observed organisms in global datasets, revealing their affinity for oligotrophic conditions. Co-occurrence networks showed distinct biogeography patterns for gelatinous matrix-forming Radiolaria compared to those without. Results suggest the matrix might be an adaptation to oligotrophic waters, increasing the effective volume, favouring prey capture, and creating a larger microenvironment for symbionts, thus promoting ecological success in nutrient-depleted waters. This study advances our understanding of the adaptation of poorly known eukaryotic groups, specifically when evolution occurs independently across lineages.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens