Nicolas A. Vecchini Santaella, Alfons J. M. Stams, Diana Z. Sousa
{"title":"Methanol and Carbon Monoxide Metabolism of the Thermophile Moorella caeni","authors":"Nicolas A. Vecchini Santaella, Alfons J. M. Stams, Diana Z. Sousa","doi":"10.1111/1462-2920.70096","DOIUrl":"https://doi.org/10.1111/1462-2920.70096","url":null,"abstract":"<p><i>Moorella</i> species are thermophilic acetogens that primarily produce acetate from one-carbon (C1) compounds including CO, CO<sub>2</sub> (+H<sub>2</sub>), methanol and formate. Notably, <i>Moorella caeni</i> DSM 21394<sup>T</sup> displays a hydrogenogenic metabolism on CO and an acetogenic metabolism on methanol. Furthermore, <i>M. caeni</i> is unable to use CO<sub>2</sub> (+H<sub>2</sub>) and grows only on formate in the presence of a methanogen or when thiosulfate is added as an electron acceptor. Presently, all theoretical frameworks for C1 metabolism in <i>Moorella</i> species are derived from experimental and genomic analyses of <i>Moorella thermoacetica</i>, which exhibits an acetogenic metabolism with all C1 substrates. In this study, we applied a transcriptomics approach to elucidate the mechanisms underlying the C1 metabolism of <i>Moorella caeni</i> during growth on methanol and CO. Our results indicate that respiratory Complex 1, a proton-translocating (ubi)quinone oxidoreductase, is the primary respiratory enzyme in methanol-grown cells of <i>M. caeni</i>. Conversely, in CO-grown cells, an energy-conserving hydrogenase complex (Ech) appears to be the primary respiratory complex, alongside respiratory Complex 1. This study provides insight into the C1 metabolism of <i>M. caeni</i> and reveals variations in gene syntenies related to C1 metabolism among the <i>Moorella</i> genus.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Needle in a Haystack: Culturing Plant-Beneficial Helotiales Lineages From Plant Roots","authors":"Pauline Bruyant, Jeanne Doré, Laurent Vallon, Yvan Moënne-Loccoz, Juliana Almario","doi":"10.1111/1462-2920.70082","DOIUrl":"https://doi.org/10.1111/1462-2920.70082","url":null,"abstract":"<p>Root-associated Helotiales fungi are increasingly recognised as beneficial fungal partners promoting plant growth under nutrient-limited conditions, particularly, in non-mycorrhizal hosts lacking the ancestral arbuscular mycorrhizal symbiosis. However, the ecology of these fungi is still cryptic as relatively few lineages have been successfully cultivated from roots for further study. Here, we attempted the mass isolation of root endophytic fungi to evaluate the recovery of known plant-beneficial Helotiales lineages using a tailored culture-based approach. We sampled six wild non-mycorrhizal species from the Brassicaceae, Caryophyllaceae, and Cyperaceae, growing in nutrient-limited alpine soils. We isolated 602 root endophytes and compared this culturable diversity with the one observed via fungal ITS2 metabarcoding. Metabarcoding revealed that Helotiales taxa dominated the fungal communities, with 43% of these detected taxa also represented in our collection. Accordingly, most root endophytes in our collection (53%) were Helotiales. These isolates, some with P solubilisation potential, belonged primarily to three Helotialean clades and were phylogenetically related to plant growth-promoting or mycorrhizal-like strains. This analysis highlights that the roots of alpine non-mycorrhizal plants harbour diverse plant-beneficial root-endophytic Helotiales, and the isolates obtained are a promising resource to explore the plant-beneficial mechanisms and ecological traits of these fungi.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ignacio Belda, Sergio Izquierdo-Gea, Belen Benitez-Dominguez, Javier Ruiz, Jean C. C. Vila
{"title":"Wine Fermentation as a Model System for Microbial Ecology and Evolution","authors":"Ignacio Belda, Sergio Izquierdo-Gea, Belen Benitez-Dominguez, Javier Ruiz, Jean C. C. Vila","doi":"10.1111/1462-2920.70092","DOIUrl":"https://doi.org/10.1111/1462-2920.70092","url":null,"abstract":"<div>\u0000 \u0000 <p>In vitro microbial communities have proven to be invaluable model systems for studying ecological and evolutionary processes experimentally. However, it remains unclear whether quantitative insights obtained from these laboratory systems can be applied to complex communities assembling and evolving in their natural ecological context. To bridge the gap between the lab and the ‘real-world’, there is a need for laboratory model systems that better approximate natural and semi-natural ecosystems. Wine fermentation presents an ideal system for this purpose, balancing experimental tractability with rich ecological and evolutionary dynamics. In this perspective piece we outline the key features that make wine fermentation a fruitful model system for ecologists and evolutionary biologists. We highlight the diversity of environmentally mediated interactions that shape community dynamics during fermentation, the complex evolutionary history of wine microbial populations, and the opportunity to study the impact of complex ecologies on evolutionary dynamics. By integrating knowledge from both wine research and microbial ecology and evolution we aim to enhance understanding and foster collaboration between these fields.</p>\u0000 </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trefor Simmons, Pol Nadal-Jimenez, Gregory D. D. Hurst
{"title":"The Honeybee Associate Galleria mellonella Can Acquire Arsenophonus apicola Through Oral and Parenteral Infection Routes","authors":"Trefor Simmons, Pol Nadal-Jimenez, Gregory D. D. Hurst","doi":"10.1111/1462-2920.70088","DOIUrl":"https://doi.org/10.1111/1462-2920.70088","url":null,"abstract":"<p>Members of the genus <i>Arsenophonus</i> are classically considered to be vertically transmitted endosymbiotic associates of invertebrates. Acquisition of <i>Arsenophonus apicola</i> by <i>Apis mellifera</i> honeybees through social and environmental pathways raises the possibility that this species can infect a broader range of host species. In this study, we tested whether a natural inhabitant of bee hives, the wax moth <i>Galleria mellonella</i>, was a suitable host for <i>A. apicola</i>. We first demonstrated <i>A. apicola</i> colonised <i>G. mellonella</i> larvae following injection at doses as low as 10<sup>4</sup> CFU. A similar capacity of <i>A. apicola</i> to infect <i>G. mellonella</i> orally was evidenced, impacting waxworm development and mortality. Microscopy indicated that <i>A. apicola</i> crossed from gut to hemocoel in the <i>G. mellonella</i> crop, inducing melanisation. PCR screening of <i>Galleria</i> individuals in an apiary sample confirmed exposure of <i>Galleria</i> in the hive context. We conclude that <i>A. apicola</i> is capable of infecting and damaging hive associates. These findings raise two onward avenues of research: first, to investigate whether <i>A. apicola</i>'s presence could protect hives against <i>Galleria</i> infestations, and second, to utilise model insect <i>G. mellonella</i> for immunity research to uncover the interplay between <i>A. apicola</i> and insect host defences whilst elucidating virulence factors utilised by <i>A. apicola</i> during infection.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143826927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Seidel, Charlotte Hamley-Bennett, Bianca J. Reeksting, Manpreet Bagga, Lukas Hellmann, Timothy D. Hoffmann, Christiane Kraemer, Irina Dana Ofiţeru, Kevin Paine, Susanne Gebhard
{"title":"Metabolic Insights Into Microbially Induced Calcite Formation by Bacillaceae for Application in Bio-Based Construction Materials","authors":"Michael Seidel, Charlotte Hamley-Bennett, Bianca J. Reeksting, Manpreet Bagga, Lukas Hellmann, Timothy D. Hoffmann, Christiane Kraemer, Irina Dana Ofiţeru, Kevin Paine, Susanne Gebhard","doi":"10.1111/1462-2920.70093","DOIUrl":"https://doi.org/10.1111/1462-2920.70093","url":null,"abstract":"<p>Microbially induced calcite precipitation (MICP) offers promising solutions for sustainable, low-cement infrastructure materials. While it is known how urea catabolism leads to biomineralisation, the non-ureolytic pathways of MICP are less clear. This limits the use of the latter in biotechnology, despite its clear benefit of avoiding toxic ammonia release. To address this knowledge gap, the present study explored the interdependence between carbon source utilisation and non-ureolytic MICP. We show that acetate can serve as the carbon source driving calcite formation in several environmental Bacillaceae isolates. This effect was particularly clear in a <i>Solibacillus silvestris</i> strain, which could precipitate almost all provided calcium when provided with a 2:1 acetate-to-calcium molar ratio, and we show that this process was independent of active cell growth. Genome sequencing and gene expression analyses revealed an apparent link between acetate catabolism and calcite precipitation in this species, suggesting MICP may be a calcium stress response. Development of a simple genetic system for <i>S. silvestris</i> led to the deletion of a proposed calcium binding protein, although this showed minimal effects on MICP. Taken together, this study provides insights into the physiological processes leading to non-ureolytic MICP, paving the way for targeted optimisation of biomineralisation for sustainable materials development.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metagenome-Assembled Genomes and Metatranscriptome Analysis of Perfluorooctane Sulfonate-Reducing Bacteria Enriched From Activated Sludge","authors":"Sovannlaksmy Sorn, Norihisa Matsuura, Ryo Honda","doi":"10.1111/1462-2920.70087","DOIUrl":"https://doi.org/10.1111/1462-2920.70087","url":null,"abstract":"<p>Per- and polyfluoroalkyl substances (PFAS) exhibit a widespread distribution across diverse global ecosystems throughout their lifecycle, posing substantial risks to human health. The persistence of PFAS makes biodegradation a challenging yet environmentally friendly solution for their treatment. In the authors' previous study, a bacterial consortium capable of reducing perfluorooctane sulfonate (PFOS) was successfully enriched from activated sludge. This study aimed to investigate the array of genes associated with PFOS reduction via biosorption and biotransformation to elucidate the metabolic pathways. Two metagenome-assembled genomes (MAGs) based on 16S rRNA sequences that share 99.86% and 97.88% similarity with <i>Hyphomicrobium denitrificans</i> and <i>Paracoccus yeei</i>, respectively were obtained. They were found to contain several genes encoding enzymes that potentially regulate biofilm formation of biosorption and facilitate the desulfonation and defluorination processes of biotransformation. Transcriptomic analysis demonstrated the high expression levels of these genes, including alkanesulfonate monooxygenase, catechol dioxygenase, (S)-2-haloacid dehalogenase and putative cytochrome P450, suggesting their involvement in PFOS biotransformation. The expression of these genes supports the presence of candidate metabolites of PFOS biotransformation detected in the previous study. These findings emphasise the significant potential of bacterial consortia and the crucial role played by genes encoding enzymes in facilitating the remediation of PFOS contaminants.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic Analysis of Polyunsaturated Fatty Acids Biosynthesis Pathway Determines Four Distinct Thraustochytrid Types","authors":"Sou-Yu Cheng, Yi-Jing Chen, Hsiu-Chin Lin, Hsin-Yang Chang, Ming-Der Huang","doi":"10.1111/1462-2920.70090","DOIUrl":"https://doi.org/10.1111/1462-2920.70090","url":null,"abstract":"<p>Thraustochytrids, diverse marine unicellular protists encompassing over 10 recognised genera, are renowned for synthesising polyunsaturated fatty acids (PUFAs), with content and composition varying substantially across genera. While PUFAs are known to be produced via PUFA synthase (PUFA-S) and/or elongase/desaturase (ELO/DES) pathways, the distinctions in genes involved remain unexplored. This study analysed PUFA biosynthetic genes in 19 thraustochytrid strains across six genera, categorising them into four types. Type I exclusively utilises the ELO/DES pathway, Type II employs both PUFA-S and complete ELO/DES pathways, while Types III and IV primarily rely on PUFA-S, with Type III lacking the canonical Δ9 desaturase and Type IV missing most desaturase and elongase enzymes. Notably, the Δ9 desaturase and ATP-citrate lyase (<i>ACLY</i>) are exclusive to Types I and II, while β-carotene hydroxylase (<i>CrtZ</i>) is absent in these types. ACLY absence suggests alternative acetyl-CoA supply pathways in Types III and IV, whereas CrtZ absence implies either a lack of specific xanthophylls or alternative biosynthetic pathways in Types I and II. Synteny analysis revealed conserved genomic organisation of PUFA biosynthetic genes, indicating a shared evolutionary trajectory. This study provides insights into the genetic diversity underlying PUFA biosynthesis in thraustochytrids, while proposing putative evolutionary pathways for the four lineages.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danyan Qiu, Mingjing Ke, Nuohan Xu, Hang Hu, Yuke Zhu, Tao Lu, MingKang Jin, Zhenyan Zhang, Qi Zhang, Josep Penuelas, Michael Gillings, Haifeng Qian
{"title":"Continuous Rice Cultivation Increases Celery Yield by Enhancing Plant Beneficial Bacteria in Rice-Celery Rotations","authors":"Danyan Qiu, Mingjing Ke, Nuohan Xu, Hang Hu, Yuke Zhu, Tao Lu, MingKang Jin, Zhenyan Zhang, Qi Zhang, Josep Penuelas, Michael Gillings, Haifeng Qian","doi":"10.1111/1462-2920.70085","DOIUrl":"https://doi.org/10.1111/1462-2920.70085","url":null,"abstract":"<div>\u0000 \u0000 <p>The sustainable management of crops is a fundamental challenge as the human population and demand for food increase. Crop rotation, a practice that has been used for centuries, offers a sustainable solution with minimal environmental impact. However, our understanding of how microbial diversity changes during rotation and how microbially mediated functions enhance plant production remains limited. In our study, we combined field surveys of rice–celery rotations with greenhouse experiments. We found that crop rotation increased yield by increasing the presence of plant-beneficial bacteria, including a novel strain named <i>Acinetobacter bohemicus</i> HfQ1. Bacteria that promote plant growth are enriched under crop rotation, leading to increased ammonia oxidation, siderophore production and indole-3-acetic acid synthesis. These beneficial ecological consequences of crop rotation were consistent across various crops during our metadata analysis. Our study provides new insights into the development of innovative crop rotation models and effective strategies to safeguard food production and advance sustainable agriculture. Additionally, the <i>Acinetobacter</i> strain may serve as a potential microbial agent to replace chemical fertilisers, further supporting sustainable agricultural practices.</p>\u0000 </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine D. Chau, Makaylee K. Crone, Phuong N. Nguyen, Sandra M. Rehan
{"title":"Flowering Plant Microbiomes and Network Interactions Across an Urban Gradient","authors":"Katherine D. Chau, Makaylee K. Crone, Phuong N. Nguyen, Sandra M. Rehan","doi":"10.1111/1462-2920.70089","DOIUrl":"https://doi.org/10.1111/1462-2920.70089","url":null,"abstract":"<p>We used flowers to explore how ephemeral anthosphere microbiomes differ among flowering plant species and along an urban gradient. Here, we sequenced 16S rRNA for bacteria, ITS1 for fungi and rbcL for plant DNA from 10 different plant species sampled to characterise anthosphere microbiomes along an urban gradient and identify important network interactions. Bacterial and fungal flower microbiomes significantly differed in diversity across plant species, especially among Asteraceae and Fabaceae. Across all analyses, four taxa, the bacteria <i>Pantoea</i> and <i>Rosenbergiella</i> and the fungi <i>Alternaria</i> and <i>Cladosporium</i> were highly prevalent and contributed to the majority of microbiome composition differences observed between plant species. These four taxa harbour strains or species that may be either pathogenic or beneficial to plants. Across a land use gradient, the plant community bacterial and fungal microbiome was stable and consistent. Flower-plant networks confirmed all focal flower families in abundance on each sampled flower, with the addition of Paulowniaceae, suggesting that pollinators visiting the focal flowers also visit this plant family. Our findings reveal that anthosphere microbiomes are diverse at the plant community level and encouragingly remain robust against urbanisation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enoch Narh Kudjordjie, Willem Desmedt, Tina Kyndt, Mogens Nicolaisen, Reuben J. Peters, Mette Vestergård
{"title":"Diterpenoid Phytoalexins Shape Rice Root Microbiomes and Their Associations With Root Parasitic Nematodes","authors":"Enoch Narh Kudjordjie, Willem Desmedt, Tina Kyndt, Mogens Nicolaisen, Reuben J. Peters, Mette Vestergård","doi":"10.1111/1462-2920.70084","DOIUrl":"https://doi.org/10.1111/1462-2920.70084","url":null,"abstract":"<p>Rice synthesises diterpenoid phytoalexins (DPs) which are known to operate in defence against foliar microbial pathogens and the root-knot nematode <i>Meloidogyne graminicola</i>. Here, we examined the role of DPs in shaping rice-associated root microbiomes in nematode-infested field soil. Further, we assessed how DPs affect interactions between the root microbiomes and <i>M. graminicola</i>. We used 16S and ITS2 rRNA gene amplicon analysis to characterise the root- and rhizosphere-associated microbiomes of DP knock-out rice mutants and their wild-type parental line, at an early (17 days) and late (28 days) stage of plant development in field soil. Disruption of DP synthesis resulted in distinct changes in the composition and structure of microbial communities both relative to the parental/wild-type line but also between individual mutants, indicating specificity in DP-microbe interactions. Moreover, the abundance of nematode-suppressive microbial taxa, including <i>Streptomyces</i>, <i>Stenotrophomonas</i> and <i>Enterobacter</i> was negatively correlated with that of <i>Meloidogyne</i>. Differential enrichment of microbial taxa in the roots of rice DP knock-out mutants versus wild-type suggests that DPs modulate specific taxa in the rice root microbiome. These findings indicate a role for DPs in plant-microbiome assembly and nematode interactions, further underscoring the potential of leveraging phytoalexins for sustainable management of crop diseases.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}