Virginija Mackevicius-Dubickaja, Yuval Gottlieb, Jennifer A. White, Matthew R. Doremus
{"title":"Wolbachia Feminises a Spider Host With Assistance From Co-Infecting Symbionts","authors":"Virginija Mackevicius-Dubickaja, Yuval Gottlieb, Jennifer A. White, Matthew R. Doremus","doi":"10.1111/1462-2920.70149","DOIUrl":null,"url":null,"abstract":"<p>Arthropods commonly harbour maternally-transmitted bacterial symbionts that manipulate host biology. Multiple heritable symbionts can co-infect the same individual, allowing these host-restricted bacteria to engage in cooperation or conflict, which can ultimately affect host phenotype. The spider <i>Mermessus fradeorum</i> is infected with up to five heritable symbionts: <i>Rickettsiella</i> (R), <i>Tisiphia</i> (T), and three strains of <i>Wolbachia</i> (W1-3). Quintuply infected spiders are feminised, causing genetic males to develop as phenotypic females and produce almost exclusively female offspring. By comparing feminisation across nine infection combinations, we identified a <i>Wolbachia</i> strain, W1, that is required for feminisation. We also observed that spiders infected with both W1 and W3 produced ~10% more females than those lacking W3. This increase in feminisation rate does not seem to be due to direct changes in W1 titre, nor does W1 titre correlate with feminisation rate. Instead, we observed subtle titre interactions among symbionts, with lower relative abundance of R and T symbionts in strongly feminised infections. This synergistic effect of co-infection on <i>Wolbachia</i> feminisation may promote the spread of all five symbionts in spider populations. These results confirm the first instance of <i>Wolbachia</i>-induced feminisation in spiders and demonstrate that co-infecting symbionts can improve the efficacy of symbiont-induced feminisation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arthropods commonly harbour maternally-transmitted bacterial symbionts that manipulate host biology. Multiple heritable symbionts can co-infect the same individual, allowing these host-restricted bacteria to engage in cooperation or conflict, which can ultimately affect host phenotype. The spider Mermessus fradeorum is infected with up to five heritable symbionts: Rickettsiella (R), Tisiphia (T), and three strains of Wolbachia (W1-3). Quintuply infected spiders are feminised, causing genetic males to develop as phenotypic females and produce almost exclusively female offspring. By comparing feminisation across nine infection combinations, we identified a Wolbachia strain, W1, that is required for feminisation. We also observed that spiders infected with both W1 and W3 produced ~10% more females than those lacking W3. This increase in feminisation rate does not seem to be due to direct changes in W1 titre, nor does W1 titre correlate with feminisation rate. Instead, we observed subtle titre interactions among symbionts, with lower relative abundance of R and T symbionts in strongly feminised infections. This synergistic effect of co-infection on Wolbachia feminisation may promote the spread of all five symbionts in spider populations. These results confirm the first instance of Wolbachia-induced feminisation in spiders and demonstrate that co-infecting symbionts can improve the efficacy of symbiont-induced feminisation.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens