Environmental microbiology最新文献

筛选
英文 中文
Host population crashes disrupt the diversity of associated marine microbiomes 宿主群体崩溃破坏了相关海洋微生物群的多样性
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-22 DOI: 10.1111/1462-2920.16611
William S. Pearman, Sergio E. Morales, Felix Vaux, Neil J. Gemmell, Ceridwen I. Fraser
{"title":"Host population crashes disrupt the diversity of associated marine microbiomes","authors":"William S. Pearman,&nbsp;Sergio E. Morales,&nbsp;Felix Vaux,&nbsp;Neil J. Gemmell,&nbsp;Ceridwen I. Fraser","doi":"10.1111/1462-2920.16611","DOIUrl":"https://doi.org/10.1111/1462-2920.16611","url":null,"abstract":"<p>Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian growth 一种单一的 Prochlorococcus 生态型主导着热带孟加拉湾的超昼夜生长
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-22 DOI: 10.1111/1462-2920.16605
Jonathan Grone, Camille Poirier, Kathleen Abbott, Fabian Wittmers, Gualtiero Spiro Jaeger, Amala Mahadevan, Alexandra Z. Worden
{"title":"A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian growth","authors":"Jonathan Grone,&nbsp;Camille Poirier,&nbsp;Kathleen Abbott,&nbsp;Fabian Wittmers,&nbsp;Gualtiero Spiro Jaeger,&nbsp;Amala Mahadevan,&nbsp;Alexandra Z. Worden","doi":"10.1111/1462-2920.16605","DOIUrl":"10.1111/1462-2920.16605","url":null,"abstract":"<p>The Bay of Bengal (BoB) spans &gt;2.2 million km<sup>2</sup> in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. <i>Prochlorococcus</i> ranged up to 3.14 × 10<sup>5</sup> cells mL<sup>−1</sup> in the surface mixed layer, averaging 1.74 ± 0.46 × 10<sup>5</sup> in the upper 10 m and consistently higher than <i>Synechococcus</i> and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% of <i>Prochlorococcus</i> amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid <i>Prochlorococcus</i> growth between 1.5 and 3.1 div day<sup>−1</sup>, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day<sup>−1</sup>. Accumulation of <i>Prochlorococcus</i> produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate <i>Prochlorococcus</i> growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16605","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the inoculum dynamics of Cladosporium on the surface of raspberry fruits and in the air 调查覆盆子果实表面和空气中 Cladosporium 的接种动态。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-21 DOI: 10.1111/1462-2920.16613
Lauren Helen Farwell, Matevz Papp-Rupar, Greg Deakin, Naresh Magan, Xiangming Xu
{"title":"Investigating the inoculum dynamics of Cladosporium on the surface of raspberry fruits and in the air","authors":"Lauren Helen Farwell,&nbsp;Matevz Papp-Rupar,&nbsp;Greg Deakin,&nbsp;Naresh Magan,&nbsp;Xiangming Xu","doi":"10.1111/1462-2920.16613","DOIUrl":"10.1111/1462-2920.16613","url":null,"abstract":"<p>Raspberry production is under threat from the emerging fungal pathogenic genus <i>Cladosporium</i>. We used amplicon-sequencing, coupled with qPCR, to investigate how fruit age, fruit location within a polytunnel, polytunnel location and sampling date affected the fruit epiphytic microbiome. Fruit age was the most important factor impacting the fungal microbiome, followed by sampling date and polytunnel location. In contrast, polytunnel location and fruit age were important factors impacting the bacterial microbiome composition, followed by the sampling date. The within-tunnel location had a small significant effect on the fungal microbiome and no effect on the bacterial microbiome. As fruit ripened, fungal diversity increased and the bacterial diversity decreased. <i>Cladosporium</i> was the most abundant fungus of the fruit epiphytic microbiome, accounting for nearly 44% of all fungal sequences. Rotorod air samplers were used to study how the concentration of airborne <i>Cladosporium</i> inoculum (quantified by qPCR) varied between location (inside and outside the polytunnel) and time (daytime vs. nighttime). Quantified <i>Cladosporium</i> DNA was significantly higher during the day than the night and inside the polytunnel than the outside. This study demonstrated the dynamic nature of epiphytic raspberry fruit microbiomes and airborne <i>Cladosporium</i> inoculum within polytunnels, which will impact disease risks on raspberry fruit.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How good are global DNA-based environmental surveys for detecting all protist diversity? Arcellinida as an example of biased representation 基于 DNA 的全球环境调查在检测所有原生生物多样性方面的效果如何?以 Arcellinida 为例,说明其代表性存在偏差。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-20 DOI: 10.1111/1462-2920.16606
Fernando Useros, Iván García-Cunchillos, Nicolas Henry, Cédric Berney, Enrique Lara
{"title":"How good are global DNA-based environmental surveys for detecting all protist diversity? Arcellinida as an example of biased representation","authors":"Fernando Useros,&nbsp;Iván García-Cunchillos,&nbsp;Nicolas Henry,&nbsp;Cédric Berney,&nbsp;Enrique Lara","doi":"10.1111/1462-2920.16606","DOIUrl":"10.1111/1462-2920.16606","url":null,"abstract":"<p>Metabarcoding approaches targeting microeukaryotes have deeply changed our vision of protist environmental diversity. The public repository EukBank consists of 18S v4 metabarcodes from 12,672 samples worldwide. To estimate how far this database provides a reasonable overview of all eukaryotic diversity, we used Arcellinida (lobose testate amoebae) as a case study. We hypothesised that (1) this approach would allow the discovery of unexpected diversity, but also that (2) some groups would be underrepresented because of primer/sequencing biases. Most of the Arcellinida sequences appeared in freshwater and soil, but their abundance and diversity appeared underrepresented. Moreover, 84% of ASVs belonged to the suborder Phryganellina, a supposedly species-poor clade, whereas the best-documented suborder (Glutinoconcha, 600 described species) was only marginally represented. We explored some possible causes of these biases. Mismatches in the primer-binding site seem to play a minor role. Excessive length of the target region could explain some of these biases, but not all. There must be some other unknown factors involved. Altogether, while metabarcoding based on ribosomal genes remains a good first approach to document microbial eukaryotic clades, alternative approaches based on other genes or sequencing techniques must be considered for an unbiased picture of the diversity of some groups.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Employing a triple metabarcoding approach to differentiate active, dormant and dead microeukaryotes in sediments 采用三重代谢编码方法区分沉积物中活跃、休眠和死亡的微真核细胞。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-19 DOI: 10.1111/1462-2920.16615
Huiwen Deng, Cui He, Alexandra Z. Worden, Jun Gong
{"title":"Employing a triple metabarcoding approach to differentiate active, dormant and dead microeukaryotes in sediments","authors":"Huiwen Deng,&nbsp;Cui He,&nbsp;Alexandra Z. Worden,&nbsp;Jun Gong","doi":"10.1111/1462-2920.16615","DOIUrl":"10.1111/1462-2920.16615","url":null,"abstract":"<p>Microbial communities are commonly characterised through the metabarcoding of environmental DNA. This DNA originates from both viable (including dormant and active) and dead organisms, leading to recent efforts to distinguish between these states. In this study, we further these approaches by distinguishing not only between viable and dead cells but also between dormant and actively growing cells. This is achieved by sequencing both rRNA and rDNA, in conjunction with propidium monoazide cross-linked rDNA, to partition the active, dormant and relic fractions in environmental samples. We apply this method to characterise the diversity and assemblage structure of these fractions of microeukaryotes in intertidal sediments during a wet-dry-rewet incubation cycle. Our findings indicate that a significant proportion of microeukaryotic phylotypes detected in the total rDNA pools originate from dormant and relic microeukaryotes in the sediments, both in terms of richness (dormant, 13 ± 2%; relic, 47 ± 5%) and read abundance (dormant, 20 ± 7%; relic, 14 ± 5%). The richness and sequence proportion of dormant microeukaryotes notably increase during the transition from wet to dry conditions. Statistical analyses suggest that the dynamics of diversity and assemblage structure across different activity fractions are influenced by various environmental drivers. Our strategy offers a versatile approach that can be adapted to characterise other microbes in a wide range of environments.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions 在富含有机物和铁(II)的条件下,古朴红单胞菌 TIE-1 的光营养铁(II)氧化作用
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-19 DOI: 10.1111/1462-2920.16608
Verena Nikeleit, Markus Maisch, James M. Byrne, Caroline Harwood, Andreas Kappler, Casey Bryce
{"title":"Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions","authors":"Verena Nikeleit,&nbsp;Markus Maisch,&nbsp;James M. Byrne,&nbsp;Caroline Harwood,&nbsp;Andreas Kappler,&nbsp;Casey Bryce","doi":"10.1111/1462-2920.16608","DOIUrl":"https://doi.org/10.1111/1462-2920.16608","url":null,"abstract":"<p><i>Rhodopseudomonas palustris</i> TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether <i>R. palustris</i> TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated <i>R. palustris</i> TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO<sub>2</sub>. We found that in the absence of CO<sub>2</sub>, only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO<sub>2</sub> was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). <sup>57</sup>Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nontarget impacts of neonicotinoids on nectar-inhabiting microbes 新烟碱对花蜜栖息微生物的非目标影响。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-17 DOI: 10.1111/1462-2920.16603
Jacob M. Cecala, Rachel L. Vannette
{"title":"Nontarget impacts of neonicotinoids on nectar-inhabiting microbes","authors":"Jacob M. Cecala,&nbsp;Rachel L. Vannette","doi":"10.1111/1462-2920.16603","DOIUrl":"10.1111/1462-2920.16603","url":null,"abstract":"<p>Plant-systemic neonicotinoid (NN) insecticides can exert non-target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant-insect interactions, including nectar-inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN-treated canola (<i>Brassica napus</i>) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field-relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential structure and function of phosphorus-mineralizing microbial communities in organic and upper mineral soil horizons across a temperate rainforest chronosequence 温带雨林时序中有机土壤层和上层矿质土壤层中磷矿化微生物群落的结构和功能差异。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-14 DOI: 10.1111/1462-2920.16600
Kari E. Dunfield, Eduardo K. Mitter, Alan E. Richardson, Jonathan R. Gaiero, Kamini Khosla, Xiaodong Chen, Andrew Wells, Philip M. Haygarth, Leo M. Condron
{"title":"Differential structure and function of phosphorus-mineralizing microbial communities in organic and upper mineral soil horizons across a temperate rainforest chronosequence","authors":"Kari E. Dunfield,&nbsp;Eduardo K. Mitter,&nbsp;Alan E. Richardson,&nbsp;Jonathan R. Gaiero,&nbsp;Kamini Khosla,&nbsp;Xiaodong Chen,&nbsp;Andrew Wells,&nbsp;Philip M. Haygarth,&nbsp;Leo M. Condron","doi":"10.1111/1462-2920.16600","DOIUrl":"10.1111/1462-2920.16600","url":null,"abstract":"<p>Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (<i>phoN</i>/<i>phoC</i>) and <i>phoD</i>-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial rarity in a subarctic stream network: Biodiversity patterns, assembly mechanisms and types of rarity 亚北极溪流网络中的细菌稀有性:生物多样性模式、组装机制和稀有类型。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-14 DOI: 10.1111/1462-2920.16592
Jacqueline Malazarte, Timo Muotka, Jussi Jyväsjärvi, Kaisa Lehosmaa, Kaisa-Riikka Mustonen, Laura Tarvainen, Kaisa-Leena Huttunen
{"title":"Bacterial rarity in a subarctic stream network: Biodiversity patterns, assembly mechanisms and types of rarity","authors":"Jacqueline Malazarte,&nbsp;Timo Muotka,&nbsp;Jussi Jyväsjärvi,&nbsp;Kaisa Lehosmaa,&nbsp;Kaisa-Riikka Mustonen,&nbsp;Laura Tarvainen,&nbsp;Kaisa-Leena Huttunen","doi":"10.1111/1462-2920.16592","DOIUrl":"10.1111/1462-2920.16592","url":null,"abstract":"<p>Dendritic stream networks are an intriguing subject for exploring the spatial and temporal variability of the rare and common bacterial biosphere, yet very few such studies have been conducted. We sampled riverine bacterioplankton at 13 sites in a subarctic riverine network across 3 years, with five sampling times each year. Ordinations showed a consistent pattern of downstream shift for both rare and abundant subcommunities. We also detected a temporal signal, with seasonal community shifts reflecting changes in water temperature and groundwater contribution, and an inter-annual pattern where the year 2018 differed from other years. Phylogenetic turnover of the rare subcommunity indicated homogeneous selection, whereas the abundant subcommunity was mainly stochastically structured. Transiently rare taxa were the dominant type of rarity with the highest proportion at the headwater regions. The bacterioplankton community was characterized by a small group of core taxa that occurred at most sites with little temporal variation, a very large number of permanently or transiently rare taxa, and taxa shifting through time between the rare and abundant biosphere. While this basic structure could have been detected with less extensive temporal replication, a comprehensive understanding of the rare biosphere in riverine bacterioplankton can only be achieved via inter-annual, spatially replicated sampling that covers the whole stream network.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental filtering governs consistent vertical zonation in sedimentary microbial communities across disconnected mountain lakes 环境过滤作用于互不相连的高山湖泊中沉积微生物群落的一致垂直分带。
IF 5.1 2区 生物学
Environmental microbiology Pub Date : 2024-03-13 DOI: 10.1111/1462-2920.16607
Jordan M. Von Eggers, Nathan I. Wisnoski, John W. Calder, Eric Capo, Dulcinea V. Groff, Amy C. Krist, Bryan Shuman
{"title":"Environmental filtering governs consistent vertical zonation in sedimentary microbial communities across disconnected mountain lakes","authors":"Jordan M. Von Eggers,&nbsp;Nathan I. Wisnoski,&nbsp;John W. Calder,&nbsp;Eric Capo,&nbsp;Dulcinea V. Groff,&nbsp;Amy C. Krist,&nbsp;Bryan Shuman","doi":"10.1111/1462-2920.16607","DOIUrl":"10.1111/1462-2920.16607","url":null,"abstract":"<p>Subsurface microorganisms make up the majority of Earth's microbial biomass, but ecological processes governing surface communities may not explain community patterns at depth because of burial. Depth constrains dispersal and energy availability, and when combined with geographic isolation across landscapes, may influence community assembly. We sequenced the 16S rRNA gene of bacteria and archaea from 48 sediment cores across 36 lakes in four disconnected mountain ranges in Wyoming, USA and used null models to infer assembly processes across depth, spatial isolation, and varying environments. Although we expected strong dispersal limitations across these isolated settings, community composition was primarily shaped by environmental selection. Communities consistently shifted from domination by organisms that degrade organic matter at the surface to methanogenic, low-energy adapted taxa in deeper zones. Stochastic processes—like dispersal limitation—contributed to differences among lakes, but because these effects weakened with depth, selection processes ultimately governed subsurface microbial biogeography.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信