Katherine D. Chau, Makaylee K. Crone, Phuong N. Nguyen, Sandra M. Rehan
{"title":"Flowering Plant Microbiomes and Network Interactions Across an Urban Gradient","authors":"Katherine D. Chau, Makaylee K. Crone, Phuong N. Nguyen, Sandra M. Rehan","doi":"10.1111/1462-2920.70089","DOIUrl":null,"url":null,"abstract":"<p>We used flowers to explore how ephemeral anthosphere microbiomes differ among flowering plant species and along an urban gradient. Here, we sequenced 16S rRNA for bacteria, ITS1 for fungi and rbcL for plant DNA from 10 different plant species sampled to characterise anthosphere microbiomes along an urban gradient and identify important network interactions. Bacterial and fungal flower microbiomes significantly differed in diversity across plant species, especially among Asteraceae and Fabaceae. Across all analyses, four taxa, the bacteria <i>Pantoea</i> and <i>Rosenbergiella</i> and the fungi <i>Alternaria</i> and <i>Cladosporium</i> were highly prevalent and contributed to the majority of microbiome composition differences observed between plant species. These four taxa harbour strains or species that may be either pathogenic or beneficial to plants. Across a land use gradient, the plant community bacterial and fungal microbiome was stable and consistent. Flower-plant networks confirmed all focal flower families in abundance on each sampled flower, with the addition of Paulowniaceae, suggesting that pollinators visiting the focal flowers also visit this plant family. Our findings reveal that anthosphere microbiomes are diverse at the plant community level and encouragingly remain robust against urbanisation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We used flowers to explore how ephemeral anthosphere microbiomes differ among flowering plant species and along an urban gradient. Here, we sequenced 16S rRNA for bacteria, ITS1 for fungi and rbcL for plant DNA from 10 different plant species sampled to characterise anthosphere microbiomes along an urban gradient and identify important network interactions. Bacterial and fungal flower microbiomes significantly differed in diversity across plant species, especially among Asteraceae and Fabaceae. Across all analyses, four taxa, the bacteria Pantoea and Rosenbergiella and the fungi Alternaria and Cladosporium were highly prevalent and contributed to the majority of microbiome composition differences observed between plant species. These four taxa harbour strains or species that may be either pathogenic or beneficial to plants. Across a land use gradient, the plant community bacterial and fungal microbiome was stable and consistent. Flower-plant networks confirmed all focal flower families in abundance on each sampled flower, with the addition of Paulowniaceae, suggesting that pollinators visiting the focal flowers also visit this plant family. Our findings reveal that anthosphere microbiomes are diverse at the plant community level and encouragingly remain robust against urbanisation.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens