Stephanie A. Eytcheson, Sarah A. Brown, Huiyun Wu, Christopher T. Nietch, Paul C. Weaver, John A. Darling, Erik M. Pilgrim, S. Thomas Purucker, Marirosa Molina
{"title":"Assessment of Emerging Pathogens and Antibiotic Resistance Genes in the Biofilm of Microplastics Incubated Under a Wastewater Discharge Simulation","authors":"Stephanie A. Eytcheson, Sarah A. Brown, Huiyun Wu, Christopher T. Nietch, Paul C. Weaver, John A. Darling, Erik M. Pilgrim, S. Thomas Purucker, Marirosa Molina","doi":"10.1111/1462-2920.70103","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microplastics (MPs) are known vectors for the transport of pathogens and antibiotic resistance genes (ARGs), but few studies have examined the long-term (> 30 days) development of MP biofilms. Wastewater Treatment Plant (WWTP) effluents are a significant source of MPs, pathogens, and antibiotics released into the environment. We explored the development of biofilms on high- and low-density polyethylene, polypropylene, and polystyrene incubated in an experimental flow-through stream facility over the course of 10 weeks. Treatments included natural river water (RW) and RW amended with treated wastewater (TWW). Analysis of 16S rRNA amplicon sequencing results revealed that MPs in TWW and RW treatments developed distinct bacterial communities, displaying significant shifts in composition over time. Plastic type had only a minor effect influencing community composition after 10 weeks of incubation. The abundance of the sulfonamide resistance gene <i>sulI</i>, the mobile genetic element <i>intI1</i>, and the emerging pathogens <i>Pseudomonas aeruginosa</i> and <i>Stenotrophomonas maltophilia</i> increased significantly during the same time period. Our results indicate that as MPs persist and disperse in the environment, they may actively contribute to an increase in the risk of human exposure to ARGs and pathogens, especially if the system is impacted by wastewater treatment effluents.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70103","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are known vectors for the transport of pathogens and antibiotic resistance genes (ARGs), but few studies have examined the long-term (> 30 days) development of MP biofilms. Wastewater Treatment Plant (WWTP) effluents are a significant source of MPs, pathogens, and antibiotics released into the environment. We explored the development of biofilms on high- and low-density polyethylene, polypropylene, and polystyrene incubated in an experimental flow-through stream facility over the course of 10 weeks. Treatments included natural river water (RW) and RW amended with treated wastewater (TWW). Analysis of 16S rRNA amplicon sequencing results revealed that MPs in TWW and RW treatments developed distinct bacterial communities, displaying significant shifts in composition over time. Plastic type had only a minor effect influencing community composition after 10 weeks of incubation. The abundance of the sulfonamide resistance gene sulI, the mobile genetic element intI1, and the emerging pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia increased significantly during the same time period. Our results indicate that as MPs persist and disperse in the environment, they may actively contribute to an increase in the risk of human exposure to ARGs and pathogens, especially if the system is impacted by wastewater treatment effluents.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens