{"title":"Two Cold-Shock Proteins Characterised as RNA Chaperone of Hyperthermophilic Archaeon Pyrococcus yayanosii","authors":"Huanhuan Zhang, Zhe Gao, Cong Li, Jun Xu","doi":"10.1111/1462-2920.70105","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cold shock proteins (Csps) play a crucial role in facilitating cellular growth at suboptimal temperatures. In this study, we identified and characterised two Csps, PyCsp and PyTRAM, in the hyperthermophilic archaeon <i>Pyrococcus yayanosii</i> A1. Using bio-layer interferometry (BLI) and molecular beacon assays, we demonstrated that both proteins exhibit RNA binding and unfolding activities in vitro. Heterologously expressed PyCsp and PyTRAM exhibited transcription anti-termination activity in <i>Escherichia coli</i> RL211 and could restore the growth of the cold-sensitive <i>E. coli</i> BX04 at 22°C. Knockout of the coding genes of either PyCsp or PyTRAM impaired the growth of <i>P. yayanosii</i> A1 at 85°C, a comparatively lower temperature to the optimal 95°C. Gene knockout and cross-complementation analyses of the coding genes for these two proteins suggest that PyCsp and PyTRAM functionally complement each other at low temperatures. PyTRAM contains the conserved TRAM domain, which is a typical characteristic of archaeal RNA chaperones. Notably, PyCsp shows low similarity to known archaeal RNA chaperones. Deletion of <i>PYCH_0765</i>, the gene encoding PyCsp, led to 27.5% changes in the transcriptome. This work highlights PyCsp as a non-TRAM class RNA chaperone that globally alters the transcriptome of <i>P. yayanosii</i> under cold shock conditions.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70105","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cold shock proteins (Csps) play a crucial role in facilitating cellular growth at suboptimal temperatures. In this study, we identified and characterised two Csps, PyCsp and PyTRAM, in the hyperthermophilic archaeon Pyrococcus yayanosii A1. Using bio-layer interferometry (BLI) and molecular beacon assays, we demonstrated that both proteins exhibit RNA binding and unfolding activities in vitro. Heterologously expressed PyCsp and PyTRAM exhibited transcription anti-termination activity in Escherichia coli RL211 and could restore the growth of the cold-sensitive E. coli BX04 at 22°C. Knockout of the coding genes of either PyCsp or PyTRAM impaired the growth of P. yayanosii A1 at 85°C, a comparatively lower temperature to the optimal 95°C. Gene knockout and cross-complementation analyses of the coding genes for these two proteins suggest that PyCsp and PyTRAM functionally complement each other at low temperatures. PyTRAM contains the conserved TRAM domain, which is a typical characteristic of archaeal RNA chaperones. Notably, PyCsp shows low similarity to known archaeal RNA chaperones. Deletion of PYCH_0765, the gene encoding PyCsp, led to 27.5% changes in the transcriptome. This work highlights PyCsp as a non-TRAM class RNA chaperone that globally alters the transcriptome of P. yayanosii under cold shock conditions.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens