{"title":"与微生物群描述符相关的植物遗传基础揭示了一种新的全生物通才基因理论。","authors":"Loeiz Maillet, Manon Norest, Adam Kautsky, Anna Geraci, Elisabetta Oddo, Angelo Troia, Anne-Yvonne Guillerm-Erckelboudt, Cyril Falentin, Mathieu Rousseau-Gueutin, Anne-Marie Chèvre, Benjamin Istace, Corinne Cruaud, Caroline Belser, Jean-Marc Aury, Rosario Schicchi, Léa Frachon, Claudia Bartoli","doi":"10.1111/1462-2920.70108","DOIUrl":null,"url":null,"abstract":"<p>Plants as animals are associated with a cortege of microbes influencing their health, fitness and evolution. Scientists refer to all living organisms as holobionts, complex genetic units that coevolve simultaneously. This is what has been recently proposed as the hologenome theory. This exciting theory has important implications on animal and plant health; however, it still needs consistent proof to be validated. Indeed, holobionts are still poorly studied in their natural habitats where coevolution processes occur. Compared to animals, wild plant populations are an excellent model to explore the hologenome theory. These sessile holobionts have coevolved with their microbiota for decades, and natural selection and adaptive processes acting on wild plants are likely to regulate the plant–microbe interactions. Here, we conducted a microbiota survey, plant genome sequencing and genome–environmental analysis (GEA) of 26 natural populations of the plant species <i>Brassica rapa</i>. We collected plants over two seasons in Italy and France and analysed the root and rhizosphere microbiota. When conducting GEA, we evidenced neat peaks of association correlating with both fungal and bacterial microbiota. Surprisingly, we found 13 common genes between fungal and bacterial diversity descriptors that we referred to under the name of holobiont generalist genes (HGGs).</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70108","citationCount":"0","resultStr":"{\"title\":\"Plant Genetic Bases Associated With Microbiota Descriptors Shed Light Into a Novel Holobiont Generalist Genes Theory\",\"authors\":\"Loeiz Maillet, Manon Norest, Adam Kautsky, Anna Geraci, Elisabetta Oddo, Angelo Troia, Anne-Yvonne Guillerm-Erckelboudt, Cyril Falentin, Mathieu Rousseau-Gueutin, Anne-Marie Chèvre, Benjamin Istace, Corinne Cruaud, Caroline Belser, Jean-Marc Aury, Rosario Schicchi, Léa Frachon, Claudia Bartoli\",\"doi\":\"10.1111/1462-2920.70108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plants as animals are associated with a cortege of microbes influencing their health, fitness and evolution. Scientists refer to all living organisms as holobionts, complex genetic units that coevolve simultaneously. This is what has been recently proposed as the hologenome theory. This exciting theory has important implications on animal and plant health; however, it still needs consistent proof to be validated. Indeed, holobionts are still poorly studied in their natural habitats where coevolution processes occur. Compared to animals, wild plant populations are an excellent model to explore the hologenome theory. These sessile holobionts have coevolved with their microbiota for decades, and natural selection and adaptive processes acting on wild plants are likely to regulate the plant–microbe interactions. Here, we conducted a microbiota survey, plant genome sequencing and genome–environmental analysis (GEA) of 26 natural populations of the plant species <i>Brassica rapa</i>. We collected plants over two seasons in Italy and France and analysed the root and rhizosphere microbiota. When conducting GEA, we evidenced neat peaks of association correlating with both fungal and bacterial microbiota. Surprisingly, we found 13 common genes between fungal and bacterial diversity descriptors that we referred to under the name of holobiont generalist genes (HGGs).</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70108\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Plant Genetic Bases Associated With Microbiota Descriptors Shed Light Into a Novel Holobiont Generalist Genes Theory
Plants as animals are associated with a cortege of microbes influencing their health, fitness and evolution. Scientists refer to all living organisms as holobionts, complex genetic units that coevolve simultaneously. This is what has been recently proposed as the hologenome theory. This exciting theory has important implications on animal and plant health; however, it still needs consistent proof to be validated. Indeed, holobionts are still poorly studied in their natural habitats where coevolution processes occur. Compared to animals, wild plant populations are an excellent model to explore the hologenome theory. These sessile holobionts have coevolved with their microbiota for decades, and natural selection and adaptive processes acting on wild plants are likely to regulate the plant–microbe interactions. Here, we conducted a microbiota survey, plant genome sequencing and genome–environmental analysis (GEA) of 26 natural populations of the plant species Brassica rapa. We collected plants over two seasons in Italy and France and analysed the root and rhizosphere microbiota. When conducting GEA, we evidenced neat peaks of association correlating with both fungal and bacterial microbiota. Surprisingly, we found 13 common genes between fungal and bacterial diversity descriptors that we referred to under the name of holobiont generalist genes (HGGs).
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens