Gareth Howells, Aysha L. Sezmis, Christopher Blake, Michael J. McDonald
{"title":"Co-Existence Slows Diversification in Experimental Populations of E. coli and P. fluorescens","authors":"Gareth Howells, Aysha L. Sezmis, Christopher Blake, Michael J. McDonald","doi":"10.1111/1462-2920.70061","DOIUrl":"https://doi.org/10.1111/1462-2920.70061","url":null,"abstract":"<p>Microbes grown in heterogeneous laboratory environments can rapidly diversify into multiple, coexisting variants. While the genetic and evolutionary mechanisms of laboratory adaptive radiations are well studied, how the presence of other species alters the outcomes of diversification is less well understood. To test the effect of co-culture growth on the <i>Pseudomonas fluorescens</i> SBW25 adaptive radiation, <i>Escherichia coli</i> and <i>P. fluorescens</i> were cultured in monoculture and co-culture for 8 weeks. In <i>P. fluorescens</i> monoculture, Wrinkly and Smooth Spreader types rapidly evolved and were maintained over 8 weeks, while <i>E. coli</i> monocultures evolved two colony types, a big and a small colony variant. In contrast, we found that in co-culture, <i>E. coli</i> did not evolve small colony variants. Whole genome sequencing revealed the genetic basis of possible co-culture specific adaptations in both <i>E. coli</i> and <i>P. fluorescens.</i> Altogether, our data support that the presence of multiple species changed the outcome of adaptive radiation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gilles De Luca, Mohamed Barakat, André Verméglio, Wafa Achouak, Thierry Heulin
{"title":"The Bacterial Genus Ramlibacter: Betaproteobacteria Capable of Surviving in Oligotrophic Environments Thanks to Several Shared Genetic Adaptation Traits","authors":"Gilles De Luca, Mohamed Barakat, André Verméglio, Wafa Achouak, Thierry Heulin","doi":"10.1111/1462-2920.70059","DOIUrl":"https://doi.org/10.1111/1462-2920.70059","url":null,"abstract":"<p><i>Ramlibacter tataouinensis</i>, the type species of the genus <i>Ramlibacter</i>, is renowned for its ability to thrive in hot, arid and nutrient-poor desert soils. To investigate whether its adaptive properties are shared across all 20 currently described <i>Ramlibacter</i> species found in diverse terrestrial and aquatic habitats worldwide, we conducted a comprehensive analysis of 16S rRNA sequences and genomic information available from the literature. Our study encompassed approximately 40 deposited genomes, allowing us to propose a genomic phylogeny that aligns with the 16S rRNA phylogeny. Our findings reveal several conserved features across the genus <i>Ramlibacter</i>. This includes the presence of light sensors, environmental sensing networks, organic carbon and phosphate acquisition systems and the ability to store carbon and energy in the form of polyhydroxyalkanoate or polyphosphate granules. These shared traits rationalise the widespread distribution of <i>Ramlibacter</i> in oligotrophic terrestrial and aquatic environments. They also explain the genus' ability to withstand desiccation, endure extended periods of starvation, and survive in nutrient-depleted conditions. Notably, certain adaptive features are further enhanced in several species by their pleiomorphism and ability to form cysts. Overall, our study not only highlights the ecological adaptations of <i>Ramlibacter</i> species but also extends our understanding of microbial ecology in oligotrophic environments.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maider J. Echeveste Medrano, Garrett J. Smith, Irene Sánchez-Andrea, Mike S. M. Jetten, Cornelia U. Welte
{"title":"Contrasting Methane, Sulfide and Nitrogen-Loading Regimes in Bioreactors Shape Microbial Communities Originating From Methane-Rich Coastal Sediment of the Stockholm Archipelago","authors":"Maider J. Echeveste Medrano, Garrett J. Smith, Irene Sánchez-Andrea, Mike S. M. Jetten, Cornelia U. Welte","doi":"10.1111/1462-2920.70056","DOIUrl":"https://doi.org/10.1111/1462-2920.70056","url":null,"abstract":"<p>Coastal ecosystems are increasingly exposed to high nutrient loads and salinity intrusions due to rising seawater levels. Microbial communities, key drivers of elemental cycles in these ecosystems, consequently, experience fluctuations. This study investigates how the methane-rich coastal sediment microbiome from the Stockholm Archipelago copes with high and low nitrogen and sulfide loading by simulating coastal conditions in two methane-saturated anoxic brackish bioreactors. Over a year, the bioreactors were subjected to the same ratio of nitrate, ammonium and sulfide (2:1:1) under eutrophic or oligotrophic conditions and monitored using 16S rRNA gene amplicon and metagenomic sequencing. Sulfide was depleted in both conditions. Sulfide-dependent denitrification was the predominant process in eutrophic conditions, whereas dissimilatory nitrate reduction to ammonium dominated under oligotrophic conditions. Methane oxidation was driven by <i>Methylobacter</i> and <i>Methylomonas</i> in eutrophic conditions, whereas a more diverse methane-oxidising microbial community developed under oligotrophic conditions, which likely competed for nitrate with anaerobic methanotrophic archaea and the gammaproteobacterial MBAE14. Novel putative copper-dependent membrane-bound monooxygenases (Cu-MMOs) were identified in MBAE14 and co-enriched <i>Rugosibacter</i> genomes, suggesting the need for further physiological and genetic characterisation. This study highlights the importance of understanding coastal anoxic microbiomes under fluctuating conditions, revealing complex interactions and novel pathways crucial for ecosystem functioning.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamics Underpinning the Microbial Community-Level Nitrogen Energy Metabolism","authors":"Mayumi Seto, Risa Sasaki, Hideshi Ooka, Ryuhei Nakamura","doi":"10.1111/1462-2920.70055","DOIUrl":"https://doi.org/10.1111/1462-2920.70055","url":null,"abstract":"<p>Nitrogen compounds often serve as crucial electron donors and acceptors in microbial energy metabolism, playing a key role in biogeochemical cycles. The energetic favorability of nitrogen oxidation–reduction (redox) reactions, driven by the thermodynamic properties of these compounds, may have shaped the evolution of microbial energy metabolism, though the extent of their influence remains unclear. This study quantitatively evaluated the similarity between energetically superior nitrogen reactions, identified from 988 theoretically plausible reactions, and the nitrogen community-level network, reconstructed as a combination of enzymatic reactions representing intracellular to interspecies-level reaction interactions. Our analysis revealed significant link overlap rates between these networks. Notably, composite enzymatic reactions aligned more closely with energetically superior reactions than individual enzymatic reactions. These findings suggest that selective pressure from the energetic favorability of redox reactions can operate primarily at the species or community level, underscoring the critical role of thermodynamics in shaping microbial metabolic networks and ecosystem functioning.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François P. Douillard, Olivia Lanzoni, Anne Duplouy, Miia Lindström
{"title":"Insects as Natural Hosts, Vectors and Reservoirs of Botulinum Neurotoxin-Producing Clostridia and Their Non-Toxinogenic Counterparts: Preliminary Evidence","authors":"François P. Douillard, Olivia Lanzoni, Anne Duplouy, Miia Lindström","doi":"10.1111/1462-2920.70053","DOIUrl":"https://doi.org/10.1111/1462-2920.70053","url":null,"abstract":"<div>\u0000 \u0000 <p>Insects play a significant role in the transmission and spread of bacterial pathogens that cause various diseases in humans and animals. The relationship among insects, bacterial pathogens and diseases is complex and depends on the specificity of the pathogens. Some clostridial species produce botulinum neurotoxin (BoNT), which is responsible for paralytic botulism. However, the ecology of these bacterial species and their non-toxinogenic phylogenetic counterparts remains unclear. This study specifically explored <i>in silico</i> evidence of the interconnection between BoNT-producing <i>Clostridia</i> and their non-toxinogenic counterparts with insects. Based on literature meta-analysis, the mining of 16S rRNA amplicon and metagenomic sequencing datasets and a pilot feeding experiment in the Glanville fritillary butterfly, <i>Melitaea cinxia</i>, we propose that BoNT-producing <i>Clostridia</i> and their non-toxinogenic phylogenetic counterparts are carried internally and/or externally in different insect orders. While previous case studies have indicated associations between <i>Clostridia</i> and insects, this work provides a more comprehensive view of their occurrence. It also highlights the need for further multidisciplinary investigations to characterise the natural ecology of BoNT-producing <i>Clostridia</i> and their non-toxinogenic counterparts in insects.</p>\u0000 </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sui Nin Nicholas Yang, Michael A. Kertesz, Nicholas V. Coleman
{"title":"Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases","authors":"Sui Nin Nicholas Yang, Michael A. Kertesz, Nicholas V. Coleman","doi":"10.1111/1462-2920.70050","DOIUrl":"https://doi.org/10.1111/1462-2920.70050","url":null,"abstract":"<p>Monooxygenase (MO) enzymes are responsible for the oxidation of hydrocarbons and other compounds in the carbon and nitrogen cycles, are important for the biodegradation of pollutants and can act as biocatalysts for chemical manufacture. The soluble di-iron monooxygenases (SDIMOs) are of interest due to their broad substrate range, high enantioselectivity and ability to oxidise inert substrates such as methane. Here, we re-examine the phylogeny and functions of these enzymes, using recent advances in the field and expansions in sequence diversity in databases to highlight relationships between SDIMOs and revisit their classification. We discuss the impact of horizontal gene transfer on SDIMO phylogeny, the potential of SDIMOs for the biodegradation of pollutants and the importance of heterologous expression as a tool for understanding SDIMO functions and enabling their use as biocatalysts. Our analysis highlights current knowledge gaps, most notably, the unknown substrate ranges and physiological roles of enzymes that have so far only been detected via genome or metagenome sequencing. Enhanced understanding of the diversity and functions of the SDIMO enzymes will enable better prediction and management of biogeochemical processes and also enable new applications of these enzymes for biocatalysis and bioremediation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristin M. Yoshimura, Sunita R. Shah Walter, Benjamin J. Tully, Jennifer F. Biddle
{"title":"Highly Dynamic Archaeal and Bacterial Communities From the Surface to the Deep in the Atlantic Ocean","authors":"Kristin M. Yoshimura, Sunita R. Shah Walter, Benjamin J. Tully, Jennifer F. Biddle","doi":"10.1111/1462-2920.70039","DOIUrl":"https://doi.org/10.1111/1462-2920.70039","url":null,"abstract":"<div>\u0000 \u0000 <p>Though archaea are ubiquitous in the oceans, at times present in quantities equal to bacteria, in general, archaea are underreported when compared with bacteria, and little is known about archaeal connectivity in the ocean. Here, we present the first time series data of size-fractionated archaea with temporal resolution of days across a depth transect in the oligotrophic Atlantic Ocean. Archaeal communities were variable from day to day, both in regards to community composition and relative abundance. In the context of the total prokaryotic community, we found that water depth and particle size were both determinants of the archaeal share of microbial populations, though the archaeal portion of the community was less discriminating between size and depth classes than the rest of the community. Quantitative PCR shows lower relative abundances of archaea in the deep Atlantic Ocean than previously reported. Overall, we find far lower connectivity between depths in the Atlantic Ocean than suggested by previous studies.</p>\u0000 </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cynthia Albracht, François Buscot, Nico Eisenhauer, Alban Gebler, Sylvie Herrmann, Anja Schmidt, Mika Tarkka, Kezia Goldmann
{"title":"Invertebrate Decline Has Minimal Effects on Oak-Associated Microbiomes","authors":"Cynthia Albracht, François Buscot, Nico Eisenhauer, Alban Gebler, Sylvie Herrmann, Anja Schmidt, Mika Tarkka, Kezia Goldmann","doi":"10.1111/1462-2920.70051","DOIUrl":"https://doi.org/10.1111/1462-2920.70051","url":null,"abstract":"<p>Recently, biomass of invertebrates has declined substantially at many locations with the implications of this biodiversity loss for ecosystems yet unknown. Through multitrophic interactions, plant- and soil-associated microbiomes might be altered, causing a cascade of changes on diverse ecosystem processes. We simulated aboveground invertebrate decline in grassland ecosystems with two levels of invertebrate biomass (36% and 100% of current ambient conditions), plus a control with no invertebrates present. Each standardised grassland mesocosm additionally contained one clonal <i>Quercus robur</i> L. sapling to investigate the extent of invertebrate decline effects exceeding grasslands. We investigated oak biomass partitioning and mycorrhiza formation, oak leaf transcriptome and microbiome composition of leaves, roots and rhizosphere. While invertebrate decline did not significantly affect oak performance and herbivory-related gene expression, fungal communities presented an increase of saprotrophs and pathogens, especially in leaves. Among leaf-inhabiting bacteria, Proteobacteria and Actinobacteria increased under invertebrate decline. The belowground microbiome was only little affected. But, invertebrate decline came along with a reduced influence on predators leading to an elevated aphids infestation that proofed able to alter microbiota. Our findings establish a strong difference between above- and belowground, with the impacts of invertebrate decline being more pronounced in the leaf microbiome.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joan Cáliz, Mateu Menéndez-Serra, Xavier Triadó-Margarit, Anna Avila, Emilio O. Casamayor
{"title":"Persistent Desert Microbiota in the Southern European Sky","authors":"Joan Cáliz, Mateu Menéndez-Serra, Xavier Triadó-Margarit, Anna Avila, Emilio O. Casamayor","doi":"10.1111/1462-2920.70046","DOIUrl":"10.1111/1462-2920.70046","url":null,"abstract":"<div>\u0000 \u0000 <p>Long-range atmospheric processes facilitate global microbial dispersal, with a pivotal role in Earth's ecosystem functioning and global health. Aerobiological studies have traditionally focused on low troposphere aerosols, leading to the assumption that airborne communities are primarily controlled by neighbouring ecosystems. We show a temporal sampling of aerosols from the free troposphere extending a period of almost three decades, coupled with the study of both high troposphere air masses provenances and genetic data of topsoils from North Africa and from a global public bacterial database. The results unveil a long-lasting influence of airborne North African desert microorganisms in Southern Europe. Although sea spray dominates global aerosol emissions, the predominance of desert microorganisms was widespread even in rain traced back to the Atlantic Ocean. The frequency of dust outbreaks, altitude reached, and long residence times are postulated as critical factors that significantly shape the long-range and persistence of aerial assemblages, with air mass provenance playing a secondary role. This study advances the current understanding of atmospheric microorganisms, underscoring their close and long-lasting relationship with terrestrial ecosystems. Further research is needed to fully understand intercontinental aerial connections with deserts and drylands elsewhere, and the influence of desert immigrants on worldwide ecosystems.</p>\u0000 </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clàudia Pérez-Barrancos, Eugenio Fraile-Nuez, Juan Pablo Martín-Díaz, Alba González-Vega, José Escánez-Pérez, María Isabel Díaz-Durán, Carmen Presas-Navarro, Mar Nieto-Cid, Jesús María Arrieta
{"title":"Shallow Hydrothermal Fluids Shape Microbial Dynamics at the Tagoro Submarine Volcano (Canary Islands, Spain)","authors":"Clàudia Pérez-Barrancos, Eugenio Fraile-Nuez, Juan Pablo Martín-Díaz, Alba González-Vega, José Escánez-Pérez, María Isabel Díaz-Durán, Carmen Presas-Navarro, Mar Nieto-Cid, Jesús María Arrieta","doi":"10.1111/1462-2920.70052","DOIUrl":"10.1111/1462-2920.70052","url":null,"abstract":"<p>Shallow underwater hydrothermal systems are often overlooked despite their potential contribution to marine diversity and biogeochemistry. Over a decade after its eruption, the Tagoro submarine volcano continues to emit heat, reduced compounds, and nutrients into shallow waters, serving as a model system for studying the effects of diffuse hydrothermal fluids on surface microbial communities. The impact on both phytoplankton and bacterial communities was examined through experimental manipulations mimicking dilution levels up to ~100 m from the primary crater of Tagoro. Chlorophyll <i>a</i> concentration doubled in the presence of hydrothermal products, with peak levels detected about a day earlier than in controls. Picoeukaryotes and <i>Synechococcus</i> cell abundances moderately increased, yet small eukaryotic phytoplankton (≤ 5 μm) predominated in the hydrothermally enriched bottles. Dinoflagellates, diatoms, small green algae and radiolarians particularly benefited from the hydrothermal inputs, along with phototrophic and chemoautotrophic bacteria. Our results indicate that hydrothermal products in shallow waters enhance primary production driven by phototrophic microbes, potentially triggering a secondary response associated with increased organic matter availability. Additionally, protistan grazing and parasitism emerged as key factors modulating local planktonic communities. Our findings highlight the role of shallow submarine hydrothermal systems in enhancing local primary production and element cycling.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}