Nichos B. Molnar, Brooke L. Weigel, Robin J. Fales, Catherine A. Pfister
{"title":"Warming Seawater Temperature and Nutrient Depletion Alters Microbial Community Composition on a Foundational Canopy Kelp Species","authors":"Nichos B. Molnar, Brooke L. Weigel, Robin J. Fales, Catherine A. Pfister","doi":"10.1111/1462-2920.70077","DOIUrl":null,"url":null,"abstract":"<p>Warming seawater temperatures and low dissolved inorganic nitrogen (DIN) levels are environmental stressors that affect the health and abundance of marine macroalgae and their microbiomes. <i>Nereocystis luetkeana</i>, a canopy-forming species of brown algae that forms critical habitat along the Pacific coast, has declined in regions impacted by these synergistic stressors. Little is known about how these environmental factors affect the microbiome of <i>N. luetkeana</i>, which could affect nutrient availability, vitamin production, and stress response for the host. We experimentally tested the interactive effects of three seawater temperatures (13°C, 16°C, 21°C) crossed with abundant and replete DIN levels on the diversity and composition of blade-associated microbiomes from two spatially separated kelp host populations. We hypothesised that kelp microbiomes exposed to high temperatures and low DIN would experience the lowest diversity. Contrary to our hypothesis, the highest temperature treatment resulted in the largest increase in microbial diversity, and microbiomes in all temperature treatments experienced a decrease in previously dominant taxa. Temperature had a larger effect than DIN on the kelp microbiome in all cases. The disruption to the kelp microbiome across all temperatures, especially at the highest temperature, suggests that the effects of warming on <i>N. luetkeana</i> extend to the microbiome.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Warming seawater temperatures and low dissolved inorganic nitrogen (DIN) levels are environmental stressors that affect the health and abundance of marine macroalgae and their microbiomes. Nereocystis luetkeana, a canopy-forming species of brown algae that forms critical habitat along the Pacific coast, has declined in regions impacted by these synergistic stressors. Little is known about how these environmental factors affect the microbiome of N. luetkeana, which could affect nutrient availability, vitamin production, and stress response for the host. We experimentally tested the interactive effects of three seawater temperatures (13°C, 16°C, 21°C) crossed with abundant and replete DIN levels on the diversity and composition of blade-associated microbiomes from two spatially separated kelp host populations. We hypothesised that kelp microbiomes exposed to high temperatures and low DIN would experience the lowest diversity. Contrary to our hypothesis, the highest temperature treatment resulted in the largest increase in microbial diversity, and microbiomes in all temperature treatments experienced a decrease in previously dominant taxa. Temperature had a larger effect than DIN on the kelp microbiome in all cases. The disruption to the kelp microbiome across all temperatures, especially at the highest temperature, suggests that the effects of warming on N. luetkeana extend to the microbiome.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens