Diversity and Ecological Relevance of Fumarate-Adding Enzymes in Oil Reservoir Microbial Communities

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Jinbo Xu, Liyun An, Yong Nie, Xiao-Lei Wu
{"title":"Diversity and Ecological Relevance of Fumarate-Adding Enzymes in Oil Reservoir Microbial Communities","authors":"Jinbo Xu,&nbsp;Liyun An,&nbsp;Yong Nie,&nbsp;Xiao-Lei Wu","doi":"10.1111/1462-2920.70068","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oil reservoirs are important hydrocarbon-rich environments, where the addition of hydrocarbons to fumarate mediated by fumarate-adding enzymes (FAE) is one of the dominant mechanisms for anaerobic degradation of hydrocarbons. However, the currently available information about FaeA, the catalytic subunit of FAE, in in situ petroleum reservoirs is limited. Here, we investigated the diversity of FaeA and FaeA-harbouring microbes in oil reservoirs and compared them with marine sediments. We obtained 67 FaeA clusters and 46 FaeA-harbouring MAGs from oil reservoirs. Most FaeA sequences and all FaeA-containing microbes were endemic and unique. In oil reservoirs, FaeA sequences were affiliated with <i>Archaeoglobus</i> and 13 bacterial phyla. Fermentative metabolism was a common lifestyle amongst these organisms. Genomes assigned to Desulfobacterota, Caldatribacteriota and Firmicutes_B were the most diverse and prevalent, while Desulfobacterota and Chloroflexota were dominant in marine. Microbial community diversity at the phylum level was strongly related to FaeA in oil reservoirs but not in marine. This suggested that the ability of anaerobic hydrocarbon biodegradation may shape community structure in oil reservoirs. Together, this study provided systematic and comprehensive information regarding the high diversity of FaeA and FaeA-containing anaerobic hydrocarbon degraders in oil reservoirs and underlined the difference between hydrocarbon-rich environments of oil reservoirs and marine.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70068","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oil reservoirs are important hydrocarbon-rich environments, where the addition of hydrocarbons to fumarate mediated by fumarate-adding enzymes (FAE) is one of the dominant mechanisms for anaerobic degradation of hydrocarbons. However, the currently available information about FaeA, the catalytic subunit of FAE, in in situ petroleum reservoirs is limited. Here, we investigated the diversity of FaeA and FaeA-harbouring microbes in oil reservoirs and compared them with marine sediments. We obtained 67 FaeA clusters and 46 FaeA-harbouring MAGs from oil reservoirs. Most FaeA sequences and all FaeA-containing microbes were endemic and unique. In oil reservoirs, FaeA sequences were affiliated with Archaeoglobus and 13 bacterial phyla. Fermentative metabolism was a common lifestyle amongst these organisms. Genomes assigned to Desulfobacterota, Caldatribacteriota and Firmicutes_B were the most diverse and prevalent, while Desulfobacterota and Chloroflexota were dominant in marine. Microbial community diversity at the phylum level was strongly related to FaeA in oil reservoirs but not in marine. This suggested that the ability of anaerobic hydrocarbon biodegradation may shape community structure in oil reservoirs. Together, this study provided systematic and comprehensive information regarding the high diversity of FaeA and FaeA-containing anaerobic hydrocarbon degraders in oil reservoirs and underlined the difference between hydrocarbon-rich environments of oil reservoirs and marine.

Abstract Image

Abstract Image

富马酸添加酶在油藏微生物群落中的多样性及其生态学意义
油层是重要的富烃环境,富马酸加酶(FAE)介导的富马酸加烃是油气厌氧降解的主要机制之一。然而,目前关于FaeA (FAE的催化亚基)在原位油藏中的应用研究有限。本文研究了油层中FaeA和含FaeA微生物的多样性,并与海洋沉积物进行了比较。我们从油藏中获得了67个FaeA集群和46个FaeA窝藏mag。大多数FaeA序列和所有含FaeA的微生物都是地方性的和独特的。在油藏中,FaeA序列隶属于古舌菌和13个细菌门。发酵代谢是这些生物中常见的一种生活方式。在海洋中,Desulfobacterota、Caldatribacteriota和Firmicutes_B基因组分布最广,而Desulfobacterota和Chloroflexota基因组分布最广。门水平上的微生物群落多样性与油层FaeA密切相关,而与海洋FaeA无关。这表明厌氧烃类生物降解能力可能会影响油藏的群落结构。本研究为油藏中FaeA和含FaeA厌氧烃降解物的多样性提供了系统、全面的信息,突出了油藏富烃环境与海相的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信