EpigeneticsPub Date : 2025-12-01Epub Date: 2025-02-25DOI: 10.1080/15592294.2025.2468113
Olukunle Akinborewa, Mattia Quattrocelli
{"title":"Glucocorticoid receptor epigenetic activity in the heart.","authors":"Olukunle Akinborewa, Mattia Quattrocelli","doi":"10.1080/15592294.2025.2468113","DOIUrl":"10.1080/15592294.2025.2468113","url":null,"abstract":"<p><p>The glucocorticoid receptor (GR) is a critical nuclear receptor that regulates gene expression in diverse tissues, including the heart, where it plays a key role in maintaining cardiovascular health. GR signaling influences essential processes within cardiomyocytes, including hypertrophy, calcium handling, and metabolic balance, all of which are vital for proper cardiac function. Dysregulation of GR activity has been implicated in various cardiovascular diseases (CVDs), highlighting the potential of GR as a therapeutic target. Remarkably, recent insights into GR's epigenetic regulation and its interaction with circadian rhythms reveal opportunities to optimize therapeutic strategies by aligning glucocorticoid administration with circadian timing. In this review, we provide an overview of the glucocorticoid receptor's role in cardiac physiology, detailing its genomic and non-genomic pathways, interactions with epigenetic and circadian regulatory mechanisms, and implications for cardiovascular disease. By dissecting these molecular interactions, this review outlines the potential of epigenetically informed and circadian-timed interventions that could change the current paradigms of CVD treatments in favor of precise and effective therapies.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2468113"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2025-12-01Epub Date: 2025-01-18DOI: 10.1080/15592294.2025.2451495
Lynnea A Nicholls, Kendall A Zeile, London D Scotto, Rebecca J Ryznar
{"title":"Timing of dietary effects on the epigenome and their potential protective effects against toxins.","authors":"Lynnea A Nicholls, Kendall A Zeile, London D Scotto, Rebecca J Ryznar","doi":"10.1080/15592294.2025.2451495","DOIUrl":"https://doi.org/10.1080/15592294.2025.2451495","url":null,"abstract":"<p><p>Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome. Most notably, the timing when dietary interventions are given - during a parent's early development, pregnancy, and/or lifetime - result in similar transgenerational epigenetic durations. This implies the existence of multiple opportunities to strategically fortify the epigenome. This narrative review explores how to best utilize dietary modifications to modify the epigenome to protect future generations against negative health effects of persistent environmental toxins. Furthermore, by suggesting an ideal diet with specific micronutrients, macronutrients, and food groups, epigenetics can play a key role in the field of preventive medicine. Based on these findings, longitudinal research should be conducted to determine if a high protein, high-fat, and low-carbohydrate diet during a mother's puberty or pregnancy can epigenetically protect against alcohol, tobacco smoke, and air pollution across multiple generations.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2451495"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2025-12-01Epub Date: 2025-02-07DOI: 10.1080/15592294.2025.2462898
Dan Li, Li Qian, Yufeng Du, Lifang Liu, Ziyue Sun, Yongkang Han, Xiangrui Guo, Chao Shen, Zheng Zhang, Xuejun Liu
{"title":"METTL14-mediated m<sup>6</sup>A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis.","authors":"Dan Li, Li Qian, Yufeng Du, Lifang Liu, Ziyue Sun, Yongkang Han, Xiangrui Guo, Chao Shen, Zheng Zhang, Xuejun Liu","doi":"10.1080/15592294.2025.2462898","DOIUrl":"10.1080/15592294.2025.2462898","url":null,"abstract":"<p><p>Although N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) may be related to the pathogenesis of fibrotic process, the mechanism of m<sup>6</sup>A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m<sup>6</sup>A modification. The expressions of identified m<sup>6</sup>A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m<sup>6</sup>A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m<sup>6</sup>A methylation in IPF. Among the m<sup>6</sup>A regulators, the expression of METTL14 decreased in IPF. The m<sup>6</sup>A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m<sup>6</sup>A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m<sup>6</sup>A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m<sup>6</sup>A modifications in aging-related IPF.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2462898"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2025-12-01Epub Date: 2025-01-28DOI: 10.1080/15592294.2025.2456418
Shafiq Shaikh, Xia Zhao, Ryan T Wagner, Xiaoyu Pan, Ryan A Hlady, Liguo Wang, Thai H Ho, Keith D Robertson
{"title":"Deciphering the interplay between SETD2 mediated H3K36me3 and RNA N6-methyladenosine in clear cell renal cell carcinoma (ccRCC).","authors":"Shafiq Shaikh, Xia Zhao, Ryan T Wagner, Xiaoyu Pan, Ryan A Hlady, Liguo Wang, Thai H Ho, Keith D Robertson","doi":"10.1080/15592294.2025.2456418","DOIUrl":"10.1080/15592294.2025.2456418","url":null,"abstract":"<p><p>RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of <i>VHL</i> followed by mutations in epigenetic regulators <i>PBRM1</i>, <i>SETD2</i>, and <i>BAP1</i>. Mutations in <i>SETD2</i>, a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming. While m6A and H3K36me3 deregulation are separately implicated in renal tumorigenesis, H3K36me3 may participate directly in m6A targeting, but the m6A-H3K36me3 interplay has not been investigated in the context of ccRCC. Using RCC-relevant SETD2 isogenic knockout and rescue cell line models, we demonstrate a dynamic redistribution of m6A in the SETD2 depleted transcriptome, with a subset of transcripts involved in metabolic reprogramming demonstrating SETD2 dependent m6A and expression level changes. Using a panel of six histone modifications we show that m6A redistributes to regions enriched in gained active enhancers upon <i>SETD2</i> inactivation. Finally, we demonstrate a reversal of transcriptomic programs involved in SETD2 loss mediated metabolic reprogramming, and reduced cell viability through pharmacologic inhibition or genetic ablation of m6A writer METTL3 specific to SETD2 deficient cells. Thus, targeting m6A may represent a novel therapeutic vulnerability in <i>SETD2</i> mutant ccRCC.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2456418"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TET-mediated 5hmC in breast cancer: mechanism and clinical potential.","authors":"Jiahang Zhang, Nadire Aishan, Zhongqiu Zheng, Siwei Ju, Qina He, Qingna Meng, Xixi Lin, Jiaheng Lang, Jichun Zhou, Yongxia Chen, Bojian Xie, Yangjun Cai, Feiyang Ji, Linbo Wang","doi":"10.1080/15592294.2025.2473250","DOIUrl":"10.1080/15592294.2025.2473250","url":null,"abstract":"<p><p>Breast cancer is the most common cancer among women, with differences in clinical features due to its distinct molecular subtypes. Current studies have demonstrated that epigenetic modifications play a crucial role in regulating the progression of breast cancer. Among these mechanisms, DNA demethylation and its reverse process have been studied extensively for their roles in activating or silencing cancer related gene expression. Specifically, Ten-Eleven Translocation (TET) enzymes are involved in the conversion process from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which results in a significant difference in the global level of 5hmC in breast cancer compared with normal tissues. In this review, we summarize the functions of TET proteins and the regulated 5hmC levels in the pathogenesis of breast cancer. Discussions on the clinical values of 5hmC in early diagnosis and the prediction of prognosis are also mentioned.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2473250"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma.","authors":"Shuangyue Ma, Xu Pan, Jing Gan, Xiaxin Guo, Jiaheng He, Haoyu Hu, Yuncong Wang, Shangwei Ning, Hui Zhi","doi":"10.1080/15592294.2024.2318506","DOIUrl":"10.1080/15592294.2024.2318506","url":null,"abstract":"<p><p>Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (<i>CpG</i><sup><i>ct</i></sup>) in glioma tissues. We identified eight prognosis-related <i>CpG</i><sup><i>ct</i></sup> to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight <i>CpG</i><sup><i>ct</i></sup> might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2318506"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-03-25DOI: 10.1080/15592294.2024.2333586
Hasan Khatib, Jessica Townsend, Melissa A Konkel, Gabi Conidi, Julia A Hasselkus
{"title":"Calling the question: what is mammalian transgenerational epigenetic inheritance?","authors":"Hasan Khatib, Jessica Townsend, Melissa A Konkel, Gabi Conidi, Julia A Hasselkus","doi":"10.1080/15592294.2024.2333586","DOIUrl":"10.1080/15592294.2024.2333586","url":null,"abstract":"<p><p>While transgenerational epigenetic inheritance has been extensively documented in plants, nematodes, and fruit flies, its existence in mammals remains controversial. Several factors have contributed to this debate, including the lack of a clear distinction between intergenerational and transgenerational epigenetic inheritance (TEI), the inconsistency of some studies, the potential confounding effects of in-utero vs. epigenetic factors, and, most importantly, the biological challenge of epigenetic reprogramming. Two waves of epigenetic reprogramming occur: in the primordial germ cells and the developing embryo after fertilization, characterized by global erasure of DNA methylation and remodelling of histone modifications. Consequently, TEI can only occur if specific genetic regions evade this reprogramming and persist through embryonic development. These challenges have revived the long-standing debate about the possibility of inheriting acquired traits, which has been strongly contested since the Lamarckian and Darwinian eras. As a result, coupled with the absence of universally accepted criteria for transgenerational epigenetic studies, a vast body of literature has emerged claiming evidence of TEI. Therefore, the goal of this study is to advocate for establishing fundamental criteria that must be met for a study to qualify as evidence of TEI. We identified five criteria based on the consensus of studies that critically evaluated TEI. To assess whether published original research papers adhere to these criteria, we examined 80 studies that either claimed or were cited as supporting TEI. The findings of this analysis underscore the widespread confusion in this field and highlight the urgent need for a unified scientific consensus on TEI requirements.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2333586"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-03-25DOI: 10.1080/15592294.2024.2332819
Emma Raitoharju, Sonja Rajić, Saara Marttila
{"title":"Non-coding 886 (<i>nc886</i>/<i>vtRNA2-1</i>), the epigenetic odd duck - implications for future studies.","authors":"Emma Raitoharju, Sonja Rajić, Saara Marttila","doi":"10.1080/15592294.2024.2332819","DOIUrl":"10.1080/15592294.2024.2332819","url":null,"abstract":"<p><p>Non-coding 886 (<i>nc886</i>, <i>vtRNA2-1</i>) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the <i>nc886</i> RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced <i>nc886</i> RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the <i>nc886</i> locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding <i>nc886</i>, discuss how the characteristics of <i>nc886</i> give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the <i>nc886</i> methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2332819"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of N6-methyladenosine-related lncRnas in pseudoexfoliation glaucoma.","authors":"Jieying Guan, Xiaohong Chen, Zhidong Li, Shuifeng Deng, Aizezi Wumaier, Yuncheng Ma, Lingling Xie, Shengsong Huang, Yingting Zhu, Yehong Zhuo","doi":"10.1080/15592294.2024.2348840","DOIUrl":"10.1080/15592294.2024.2348840","url":null,"abstract":"<p><p>To explore the role of lncRNA m<sup>6</sup>A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m<sup>6</sup>A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m<sup>6</sup>A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m<sup>6</sup>A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m<sup>6</sup>A peaks, with statistically significant differences (| Fold Change (FC) |≥2, <i>p</i> < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- β signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m<sup>6</sup>A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m<sup>6</sup>A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m<sup>6</sup>A methylation.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2348840"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-06-24DOI: 10.1080/15592294.2024.2369006
Yanli Shen, Yan Yang, Yan Zhao, Saiteer Nuerlan, Yiyi Zhan, Chunling Liu
{"title":"YY1/circCTNNB1/miR-186-5p/YY1 positive loop aggravates lung cancer progression through the Wnt pathway.","authors":"Yanli Shen, Yan Yang, Yan Zhao, Saiteer Nuerlan, Yiyi Zhan, Chunling Liu","doi":"10.1080/15592294.2024.2369006","DOIUrl":"10.1080/15592294.2024.2369006","url":null,"abstract":"<p><p>Lung cancer is one familiar cancer that threatens the lives of humans. circCTNNB1 has been disclosed to have regulatory functions in some diseases. However, the functions and related regulatory mechanisms of circCTNNB1 in lung cancer remain largely indistinct. The mRNA and protein expression levels were examined through real-time polymerase chain reaction (RT-qPCR) and western blot. The cell proliferation was tested through CCK-8 assay. The cell migration and invasion were confirmed through Transwell assays. The cell senescence was evaluated through SA-β-gal assay. The binding ability between miR-186-5p and circCTNNB1 (or YY1) was verified through luciferase reporter and RIP assays. In this study, the higher expression of circCTNNB1 was discovered in lung cancer tissues and cell lines and resulted in poor prognosis. In addition, circCTNNB1 facilitated lung cancer cell proliferation, migration, invasion, and suppressed cell senescence. Knockdown of circCTNNB1 retarded the Wnt pathway. Mechanism-related experiments revealed that circCTNNB1 combined with miR-186-5p to target YY1. Through rescue assays, YY1 overexpression could rescue decreased cell proliferation, migration, invasion, increased cell senescence, and retarded Wnt pathway mediated by circCTNNB1 suppression. Furthermore, YY1 acts as a transcription factor that can transcriptionally activate circCTNNB1 to form YY1/circCTNNB1/miR-186-5p/YY1 positive loop. Through in vivo assays, circCTNNB1 accelerated tumour growth in vivo. All findings revealed that a positive loop YY1/circCTNNB1/miR-186-5p/YY1 aggravated lung cancer progression by modulating the Wnt pathway.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2369006"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}