Normal bronchial field basal cells show persistent methylome-wide impact of tobacco smoking, including in known cancer genes.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-02-20 DOI:10.1080/15592294.2025.2466382
Batbayar Khulan, Kenny Ye, Miao Kevin Shi, Spencer Waldman, Ava Marsh, Taha Siddiqui, Aham Okorozo, Aditi Desai, Dhruv Patel, Jay Dobkin, Ali Sadoughi, Chirag Shah, Shweta Gera, Yakov Peter, Will Liao, Jan Vijg, Simon D Spivack
{"title":"Normal bronchial field basal cells show persistent methylome-wide impact of tobacco smoking, including in known cancer genes.","authors":"Batbayar Khulan, Kenny Ye, Miao Kevin Shi, Spencer Waldman, Ava Marsh, Taha Siddiqui, Aham Okorozo, Aditi Desai, Dhruv Patel, Jay Dobkin, Ali Sadoughi, Chirag Shah, Shweta Gera, Yakov Peter, Will Liao, Jan Vijg, Simon D Spivack","doi":"10.1080/15592294.2025.2466382","DOIUrl":null,"url":null,"abstract":"<p><p>Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (<i>p</i> = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in <i>CDKL1, ARTN</i>, <i>EDC3</i>, <i>CYP1B1</i>, <i>FAM131A</i>, and <i>MAGI2</i>. Among candidate cancer genes, smoking reduced the methylation level in <i>KRAS</i>, <i>ROS1</i>, <i>CDKN1A</i>, <i>CHRNB4</i>, and <i>CADM1</i>. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2466382"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2466382","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (p = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in CDKL1, ARTN, EDC3, CYP1B1, FAM131A, and MAGI2. Among candidate cancer genes, smoking reduced the methylation level in KRAS, ROS1, CDKN1A, CHRNB4, and CADM1. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.

正常支气管野基底细胞显示吸烟对甲基组的持续影响,包括已知的癌症基因。
肺癌的发生与吸烟有因果关系,部分原因是表观遗传变化。我们测试了吸烟者在支气管基底细胞中积累的表观遗传变化是否明显作为鳞状细胞癌的起源细胞。使用EM-seq平台,覆盖5380万个CpGs(96%的全基因组),平均每个CpG位点在单碱基分辨率下测序7.5个读数,我们评估了细胞学-支气管镜下从原位烟草烟雾暴露的“支气管上皮场”中刷取的正常基底细胞,并通过短期原代培养从54名人类受试者中分离。我们发现,在启动子、CpG海岸、外显子、内含子、3’- utr和基因间区域,全球(曾经和现在)吸烟者的平均甲基化水平低于从不吸烟者(p = 0.0013),但在CpG岛中没有。在含有CpG二核苷酸的6个mers中,含有CGCG的对吸烟没有影响,而含有TT和AA的对吸烟的影响最大。在基因水平上,CDKL1、ARTN、EDC3、CYP1B1、FAM131A和MAGI2的甲基化水平与吸烟相关。在候选癌症基因中,吸烟降低了KRAS、ROS1、CDKN1A、CHRNB4和CADM1的甲基化水平。我们得出的结论是,吸烟减少支气管干细胞的长期表观基因组甲基化,受到侧翼序列的影响,并且在戒烟后无限期持续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信