Batbayar Khulan, Kenny Ye, Miao Kevin Shi, Spencer Waldman, Ava Marsh, Taha Siddiqui, Aham Okorozo, Aditi Desai, Dhruv Patel, Jay Dobkin, Ali Sadoughi, Chirag Shah, Shweta Gera, Yakov Peter, Will Liao, Jan Vijg, Simon D Spivack
{"title":"Normal bronchial field basal cells show persistent methylome-wide impact of tobacco smoking, including in known cancer genes.","authors":"Batbayar Khulan, Kenny Ye, Miao Kevin Shi, Spencer Waldman, Ava Marsh, Taha Siddiqui, Aham Okorozo, Aditi Desai, Dhruv Patel, Jay Dobkin, Ali Sadoughi, Chirag Shah, Shweta Gera, Yakov Peter, Will Liao, Jan Vijg, Simon D Spivack","doi":"10.1080/15592294.2025.2466382","DOIUrl":null,"url":null,"abstract":"<p><p>Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (<i>p</i> = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in <i>CDKL1, ARTN</i>, <i>EDC3</i>, <i>CYP1B1</i>, <i>FAM131A</i>, and <i>MAGI2</i>. Among candidate cancer genes, smoking reduced the methylation level in <i>KRAS</i>, <i>ROS1</i>, <i>CDKN1A</i>, <i>CHRNB4</i>, and <i>CADM1</i>. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2466382"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2466382","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (p = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in CDKL1, ARTN, EDC3, CYP1B1, FAM131A, and MAGI2. Among candidate cancer genes, smoking reduced the methylation level in KRAS, ROS1, CDKN1A, CHRNB4, and CADM1. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics