A polyepigenetic glucocorticoid exposure score and HPA axis-related DNA methylation are associated with gestational epigenetic aging.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-02-25 DOI:10.1080/15592294.2025.2471129
Allison A Appleton
{"title":"A polyepigenetic glucocorticoid exposure score and HPA axis-related DNA methylation are associated with gestational epigenetic aging.","authors":"Allison A Appleton","doi":"10.1080/15592294.2025.2471129","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational epigenetic aging (GEA) is a novel approach for characterizing associations between prenatal exposures and postnatal risks. Psychosocial adversity in pregnancy may influence GEA, but the molecular mechanisms are not well understood. DNA methylation to glucocorticoid regulation and hypothalamic-pituitary-adrenal (HPA) axis genes are implicated but have not been fully examined in association with GEA. This study investigated whether a polyepigenetic glucocorticoid exposure score (PGES) and HPA axis gene (<i>NR3C1, HSD11B2, FKBP5</i>) methylation were associated with GEA, and whether associations were sex-specific. Participants were from a prospective cohort of racial/ethnic diverse and socially disadvantaged pregnant women and infants (<i>n</i> = 200). DNA methylation variables were estimated using umbilical cord blood. PGES was derived with CpGs shown to be sensitive to synthetic dexamethasone exposure. <i>NR3C1</i>, <i>HSD11B2</i>, and <i>FKBP5</i> methylation was summarized via factor analysis. We found that PGES (β = -1.12, SE = 0.47, <i>p</i> = 0.02) and several <i>NR3C1</i> and <i>FKBP5</i> factor scores were associated with decelerated GEA (all <i>p</i> < 0.05). A significant sex interaction was observed for <i>FKBP5</i> factor score 3 (β = -0.34, SE = 0.15, <i>p</i> = 0.02) suggesting decelerated GEA for males but not females. This study showed that glucocorticoid regulation-related DNA methylation was associated with a decelerated aging phenotype at birth that might indicate a neonatal risk.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2471129"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2471129","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gestational epigenetic aging (GEA) is a novel approach for characterizing associations between prenatal exposures and postnatal risks. Psychosocial adversity in pregnancy may influence GEA, but the molecular mechanisms are not well understood. DNA methylation to glucocorticoid regulation and hypothalamic-pituitary-adrenal (HPA) axis genes are implicated but have not been fully examined in association with GEA. This study investigated whether a polyepigenetic glucocorticoid exposure score (PGES) and HPA axis gene (NR3C1, HSD11B2, FKBP5) methylation were associated with GEA, and whether associations were sex-specific. Participants were from a prospective cohort of racial/ethnic diverse and socially disadvantaged pregnant women and infants (n = 200). DNA methylation variables were estimated using umbilical cord blood. PGES was derived with CpGs shown to be sensitive to synthetic dexamethasone exposure. NR3C1, HSD11B2, and FKBP5 methylation was summarized via factor analysis. We found that PGES (β = -1.12, SE = 0.47, p = 0.02) and several NR3C1 and FKBP5 factor scores were associated with decelerated GEA (all p < 0.05). A significant sex interaction was observed for FKBP5 factor score 3 (β = -0.34, SE = 0.15, p = 0.02) suggesting decelerated GEA for males but not females. This study showed that glucocorticoid regulation-related DNA methylation was associated with a decelerated aging phenotype at birth that might indicate a neonatal risk.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信