{"title":"衰竭心脏的长期代谢损伤:表观遗传记忆在起作用。","authors":"Sarah Costantino, Francesco Paneni","doi":"10.1080/15592294.2025.2515430","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the factors involved in myocardial recovery after unloading is of utmost importance to unveil new therapies in patients with heart failure (HF). Lack of myocardial recovery might be explained by long-lasting molecular alterations which persist despite normalization of cardiac stress. In this issue of Epigenetics, Roth et al. present an elegant translational study addressing this important aspect at the molecular level. By leveraging a mouse model of reversible transverse aortic constriction (rTAC) and human LV samples from HF patients undergoing LVAD therapy, the authors show that cardiac unloading is associated with a persistent deregulation of transcriptional programmes implicated in mitochondrial respiration, fatty acid and acyl-CoA metabolism, suggesting a long-lasting metabolic deterioration of the failing heart. Of interest, the authors identified several chromatin remodellers (Hdac4, Smarca2, and Brd4) potentially explaining the observed transcriptional alterations. Taken together, these novel findings suggest that 'DNA forgives but does not forget,' thus leaving an epigenetic scar which hampers the recovery of the failing heart after unloading. Disentangling the epigenetic factors involved in such 'transcriptional memory' may set the stage for new interventions resetting the cardiomyocyte transcriptome and myocardial energetics thus fostering a true myocardial recovery in HF.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2515430"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153395/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-lasting metabolic impairment in the failing heart: epigenetic memories at play.\",\"authors\":\"Sarah Costantino, Francesco Paneni\",\"doi\":\"10.1080/15592294.2025.2515430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the factors involved in myocardial recovery after unloading is of utmost importance to unveil new therapies in patients with heart failure (HF). Lack of myocardial recovery might be explained by long-lasting molecular alterations which persist despite normalization of cardiac stress. In this issue of Epigenetics, Roth et al. present an elegant translational study addressing this important aspect at the molecular level. By leveraging a mouse model of reversible transverse aortic constriction (rTAC) and human LV samples from HF patients undergoing LVAD therapy, the authors show that cardiac unloading is associated with a persistent deregulation of transcriptional programmes implicated in mitochondrial respiration, fatty acid and acyl-CoA metabolism, suggesting a long-lasting metabolic deterioration of the failing heart. Of interest, the authors identified several chromatin remodellers (Hdac4, Smarca2, and Brd4) potentially explaining the observed transcriptional alterations. Taken together, these novel findings suggest that 'DNA forgives but does not forget,' thus leaving an epigenetic scar which hampers the recovery of the failing heart after unloading. Disentangling the epigenetic factors involved in such 'transcriptional memory' may set the stage for new interventions resetting the cardiomyocyte transcriptome and myocardial energetics thus fostering a true myocardial recovery in HF.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":\"20 1\",\"pages\":\"2515430\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153395/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2025.2515430\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2515430","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Long-lasting metabolic impairment in the failing heart: epigenetic memories at play.
Understanding the factors involved in myocardial recovery after unloading is of utmost importance to unveil new therapies in patients with heart failure (HF). Lack of myocardial recovery might be explained by long-lasting molecular alterations which persist despite normalization of cardiac stress. In this issue of Epigenetics, Roth et al. present an elegant translational study addressing this important aspect at the molecular level. By leveraging a mouse model of reversible transverse aortic constriction (rTAC) and human LV samples from HF patients undergoing LVAD therapy, the authors show that cardiac unloading is associated with a persistent deregulation of transcriptional programmes implicated in mitochondrial respiration, fatty acid and acyl-CoA metabolism, suggesting a long-lasting metabolic deterioration of the failing heart. Of interest, the authors identified several chromatin remodellers (Hdac4, Smarca2, and Brd4) potentially explaining the observed transcriptional alterations. Taken together, these novel findings suggest that 'DNA forgives but does not forget,' thus leaving an epigenetic scar which hampers the recovery of the failing heart after unloading. Disentangling the epigenetic factors involved in such 'transcriptional memory' may set the stage for new interventions resetting the cardiomyocyte transcriptome and myocardial energetics thus fostering a true myocardial recovery in HF.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics