ELECTROPHORESISPub Date : 2024-06-07DOI: 10.1002/elps.202300049
Edwin D. Lavi, Zachary Gagnon
{"title":"Measurement and analysis of ionic leakage profiles in refrigerated human red blood cells using dielectrophoresis and inductively coupled mass spectroscopy","authors":"Edwin D. Lavi, Zachary Gagnon","doi":"10.1002/elps.202300049","DOIUrl":"10.1002/elps.202300049","url":null,"abstract":"<p>Human red blood cells (RBCs) undergo ionic leakage through passive diffusion during refrigerated storage, affecting their quality and health. We investigated the dynamics of ionic leakage in human RBCs over a 20-day refrigerated storage period using extracellular ion quantification and dielectrophoresis (DEP). Four type O− human blood donors were examined to assess the relationship between extracellular ion concentrations (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, and Fe<sup>2+</sup>), RBC cytoplasm conductivity, and membrane conductance. A consistent negative correlation between RBC cytoplasm conductivity and membrane conductance, termed the “ionic leakage profile” (ILP), was observed across the 20-day storage period. Specifically, we noted a gradual decline in DEP-measured RBC cytoplasm conductivity alongside an increase in membrane conductance. Further examination of the electrical origins of this ILP using inductively coupled plasma mass spectrometry revealed a relative decrease in extracellular Na<sup>+</sup> concentration and an increase in K<sup>+</sup> concentration over the storage period. Correlation of these extracellular ion concentrations with DEP-measured RBC electrical properties demonstrated a direct link between changes in the cytoplasmic and membrane domains and the leakage and transport of K<sup>+</sup> and Na<sup>+</sup> ions across the cell membrane. Our analysis suggests that the inverse correlation between RBC cytoplasm and membrane conductance is primarily driven by the passive diffusion of K<sup>+</sup> from the cytoplasm and the concurrent diffusion of Na<sup>+</sup> from the extracellular buffer into the membrane, resulting in a conductive reduction in the cytoplasmic domain and a subsequent increase in the membrane. The ILP's consistent negative trend across all donors suggests that it could serve as a metric for quantifying blood bank storage age, predicting the quality and health of refrigerated RBCs.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202300049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-06-04DOI: 10.1002/elps.202400021
Sujani B. Y. Abeywardena, Zhilian Yue, Gordon G. Wallace, Peter C. Innis
{"title":"Electrofluidic control for textile-based cell culture: Identification of appropriate conditions required to integrate cell culture with electrofluidics","authors":"Sujani B. Y. Abeywardena, Zhilian Yue, Gordon G. Wallace, Peter C. Innis","doi":"10.1002/elps.202400021","DOIUrl":"10.1002/elps.202400021","url":null,"abstract":"<p>Electric field–driven microfluidics, known as electrofluidics, is a novel attractive analytical tool when it is integrated with low-cost textile substrate. Textile-based electrofluidics, primarily explored on yarn substrates, is in its early stages, with few studies on 3D structures. Further, textile structures have rarely been used in cellular analysis as a low-cost alternative. Herein, we investigated novel 3D textile structures and develop optimal electrophoretic designs and conditions that are favourable for direct 3D cell culture integration, developing an integrated cell culture textile-based electrofluidic platform that was optimised to balance electrokinetic performance and cell viability requirements. Significantly, there were contrasting electrolyte compositional conditions that were required to satisfy cell viability and electrophoretic mobility requiring the development of and electrolyte that satisfied the minimum requirements of both these components within the one platform. Human dermal fibroblast cell cultures were successfully integrated with gelatine methacryloyl (GelMA) hydrogel-coated electrofluidic platform and studied under different electric fields using 5 mM TRIS/HEPES/300 mM glucose. Higher analyte mobility was observed on 2.5% GelMA-coated textile which also facilitated excellent cell attachment, viability and proliferation. Cell viability also increased by decreasing the magnitude and time duration of applied electric field with good cell viability at field of up to 20 V cm<sup>−1</sup>.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-06-04DOI: 10.1002/elps.202400020
Sujani B. Y. Abeywardena, Zhilian Yue, Gordon G. Wallace, Peter C. Innis
{"title":"Novel 3D textile structures and geometries for electrofluidics","authors":"Sujani B. Y. Abeywardena, Zhilian Yue, Gordon G. Wallace, Peter C. Innis","doi":"10.1002/elps.202400020","DOIUrl":"10.1002/elps.202400020","url":null,"abstract":"<p>The integration of microfluidics with electric field control, commonly referred to as electrofluidics, has led to new opportunities for biomedical analysis. The requirement for closed microcapillary channels in microfluidics, typically formed via complex microlithographic fabrication approaches, limits the direct accessibility to the separation processes during conventional electrofluidic devices. Textile structures provide an alternative and low-cost approach to overcome these limitations via providing open and surface-accessible capillary channels. Herein, we investigate the potential of different 3D textile structures for electrofluidics. In this study, 12 polyester yarns were braided around nylon monofilament cores of different diameters to produce functional 3D core–shell textile structures. Capillary electrophoresis performances of these 3D core–shell textile structures both before and after removing the nylon core were evaluated in terms of mobility and bandwidth of a fluorescence marker compound. It was shown that the fibre arrangement and density govern the inherent capillary formation within these textile structures which also impacts upon the solute analyte mobility and separation bandwidth during electrophoretic studies. Core–shell textile structures with a 0.47 mm nylon core exhibited the highest fluorescein mobility and presented a narrower separation bandwidth. This optimal textile structure was readily converted to different geometries via a simple heat-setting of the central nylon core. This approach can be used to fabricate an array of miniaturized devices that possess many of the basic functionalities required in electrofluidics while maintaining open surface access that is otherwise impractical in classical approaches.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-05-30DOI: 10.1002/elps.202400070
Dalin Chen, Qiang Huang, Zhonghua Ni, Nan Xiang
{"title":"Elasto-inertial particle focusing in sinusoidal microfluidic channels.","authors":"Dalin Chen, Qiang Huang, Zhonghua Ni, Nan Xiang","doi":"10.1002/elps.202400070","DOIUrl":"https://doi.org/10.1002/elps.202400070","url":null,"abstract":"<p><p>Dean flow existing in sinusoidal channels could enhance the throughput and efficiency for elasto-inertial particle focusing. However, the fundamental mechanisms of elasto-inertial focusing in sinusoidal channels are still unclear. This work employs four microfluidic devices with symmetric and asymmetric sinusoidal channels to explore the elasto-inertial focusing mechanisms over a wide range of flow rates. The effects of rheological property, flow rate, sinusoidal channel curvature, particle size, and asymmetric geometry on particle focusing performance are investigated. It is intriguing to find that the Dean flow makes a substantial contribution to the particle elasto-inertial focusing. The results illustrate that a better particle focusing performance and a faster focusing process are obtained in the sinusoidal channel with a small curvature radius due to stronger Dean flow. In addition, the particle focusing performance is also related to particle diameter and rheological properties, the larger particles show a better focusing performance than smaller particles, and the smaller flow rate is required for particles to achieve stable focusing at the outlet in the higher concentration of polyvinylpyrrolidone solutions. Our work offers an increased knowledge of the mechanisms of elasto-inertial focusing in sinusoidal channels. Ultimately, these results provide supportive guidelines into the design and development of sinusoidal elasto-inertial microfluidic devices for high-performance focusing.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-05-29DOI: 10.1002/elps.202300297
Dongsheng Li, Jiayin Dong, Haibin Li
{"title":"Electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid through a rough circular microchannel with surface charge–dependent slip","authors":"Dongsheng Li, Jiayin Dong, Haibin Li","doi":"10.1002/elps.202300297","DOIUrl":"10.1002/elps.202300297","url":null,"abstract":"<p>This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds number <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mi>e</mi>\u0000 </mrow>\u0000 <annotation>$Re$</annotation>\u0000 </semantics></math> in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon $</annotation>\u0000 </semantics></math> and wave number <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> on velocity and the influence of wall roughness <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon $</annotation>\u0000 </semantics></math> and surface charge density <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>σ</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <annotation>${sigma }_s$</annotation>\u0000 </semantics></math> on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mi>e</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$Re = 1$</annotation>\u0000 </semantics></math>) and an increment at high Reynolds numbers (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mi>e</mi>\u0000 <mo>=</mo>\u0000 <mn>10</mn>\u0000 </mrow>\u0000 <annotation>$Re = 10$</annotation>\u0000 </semantics></math>). For any Reynolds number, a roughness with an odd multiple of wave number (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>=</mo>\u0000 <mn>6</mn>\u0000 <mo>,</mo>\u0000 <mn>10</mn>\u0000 </mrow>\u0000 <annotation>$k = 6,10$</annotation>\u0000 </semantics></math>) will result in a more stable velocity profile compared to one with an even multiple of wave ","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forensic DNA phenotyping using Oxford Nanopore Sequencing system.","authors":"Veysel Sapan, Sumeyye Zulal Simsek, Gonul Filoğlu, Ozlem Bulbul","doi":"10.1002/elps.202300252","DOIUrl":"https://doi.org/10.1002/elps.202300252","url":null,"abstract":"<p><p>In forensic science, the demand for precision, consistency, and cost-effectiveness has driven the exploration of next-generation sequencing technologies. This study investigates the potential of Oxford Nanopore Sequencing (ONT) Technology for analyzing the HIrisPlex-S panel, a set of 41 single nucleotide polymorphism (SNP) markers used to predict eye, hair, and skin color. Using ONT sequencing, we assessed the accuracy and reliability of ONT-generated data by comparing it with conventional capillary electrophoresis (CE) in 18 samples. The Guppy v6.1 was used as a basecaller, and sample profiles were obtained using Burrows-Wheeler Aligner, Samtools, BCFtools, and Python. Comparing accuracy with CE, we found that 62% of SNPs in ONT-unligated samples were correctly genotyped, with 36% showing allele dropout, and 2% being incorrectly genotyped. In the ONT-ligated samples, 85% of SNPs were correctly genotyped, with 10% showing allele dropout, and 5% being incorrectly genotyped. Our findings indicate that ONT, particularly when combined with ligation, enhances genotyping accuracy and coverage, thereby reducing allele dropouts. However, challenges associated with the technology's error rates and the impact on genotyping accuracy are recognized. Phenotype predictions based on ONT data demonstrate varying degrees of success, with the technology showing high accuracy in several cases. Although ONT technology holds promise in forensic genetics, further optimization and quality control measures are essential to harness its full potential. This study contributes to the ongoing efforts to refine sequence read tuning and improve correction tools in the context of ONT technology's application in forensic genetics.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-05-25DOI: 10.1002/elps.202400042
Xin Shi, Qing He, Wei Tan, Yuwen Lu, Guorui Zhu
{"title":"Experiment study on focusing pattern prediction of particles in asymmetric contraction-expansion array channel.","authors":"Xin Shi, Qing He, Wei Tan, Yuwen Lu, Guorui Zhu","doi":"10.1002/elps.202400042","DOIUrl":"https://doi.org/10.1002/elps.202400042","url":null,"abstract":"<p><p>Contraction-expansion array (CEA) microchannel is a typical structure applied on particle/cell manipulation. The prediction of the particle focusing pattern in CEA microchannel is worthwhile to be investigate deeply. Here, we demonstrated a virtual boundary method by flow field analysis and theoretical derivation. The calculating method of the virtual boundary location, related to the Reynolds number (R<sub>e</sub>) and the structure parameter R<sub>W</sub>, was proposed. Combining the approximate Poiseuille flow pattern based on the virtual boundary method with the simulation results of Dean flow, the main line pattern and the main/lateral lines pattern were predicted and validated in experiments. The transformation from the main line pattern to the main/lateral lines pattern can be facilitated by increasing R<sub>e</sub>, decreasing R<sub>W</sub> <sub>,</sub> and decreasing α. An empirical formula was derived to characterize the critical condition of the transformation. The virtual boundary method can provide a guidance for asymmetric CEA channel design and contribute to the widespread application of microfluidic particle focusing.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-05-25DOI: 10.1002/elps.202400007
Jaime Dos Santos Viana, Pavel Kubáň, Bruno Gonçalves Botelho, Ricardo M Orlando
{"title":"Multiphase electroextraction of malachite green from surface water and its determination using digital imaging and chemometric tools.","authors":"Jaime Dos Santos Viana, Pavel Kubáň, Bruno Gonçalves Botelho, Ricardo M Orlando","doi":"10.1002/elps.202400007","DOIUrl":"https://doi.org/10.1002/elps.202400007","url":null,"abstract":"<p><p>This study introduces a novel method for the quantification of malachite green (MG), a pervasive cationic dye, in surface water by synergizing multiphase electroextraction (MPEE) with digital image analysis (DIA) and partial least square discriminant analysis. Aimed at addressing the limitations of conventional DIA methods in terms of quantitation limits and selectivity, this study achieves a significant breakthrough in the preconcentration of MG using magnesium silicate as a novel sorbent. Demonstrating exceptional processing efficiency, the method allows for the analysis of 10 samples within 20 min, exhibiting remarkable sensitivity and specificity (over 0.95 and 0.90, respectively) across 156 samples in both training and test sets. Notably, the method detects MG at low concentrations (0.2 µg L<sup>-1</sup>) in complex matrices, highlighting its potential for broader application in environmental monitoring. This approach not only underscores the method's cost-effectiveness and simplicity but also its precision, making it a valuable tool for the preliminary testing of MG in surface waters. This study underscores the synergy among MPEE, DIA, and chemometric tools, presenting a cost-efficient and reliable alternative for the sensitive detection of water contaminants.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acoustofluidic manipulation for submicron to nanoparticles.","authors":"Wei Wei, Zhaoxun Wang, Bingnan Wang, Xinyuan He, Yaping Wang, Yang Bai, Qingrui Yang, Wei Pang, Xuexin Duan","doi":"10.1002/elps.202400062","DOIUrl":"https://doi.org/10.1002/elps.202400062","url":null,"abstract":"<p><p>Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non-biological types. Submicron-to-nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non-biological particles cover various inorganic, metallic, and carbon-based particles. The effective manipulation of these submicron to nanoparticles, including their separation, sorting, enrichment, assembly, trapping, and transport, is a fundamental requirement for different applications. Acoustofluidics, owing to their distinct advantages, have emerged as a potent tool for nanoparticle manipulation over the past decade. Although recent literature reviews have encapsulated the evolution of acoustofluidic technology, there is a paucity of reports specifically addressing the acoustical manipulation of submicron to nanoparticles. This article endeavors to provide a comprehensive study of this topic, delving into the principles, apparatus, and merits of acoustofluidic manipulation of submicron to nanoparticles, and discussing the state-of-the-art developments in this technology. The discourse commences with an introduction to the fundamental theory of acoustofluidic control and the forces involved in nanoparticle manipulation. Subsequently, the working mechanism of acoustofluidic manipulation of submicron to nanoparticles is dissected into two parts, dominated by the acoustic wave field and the acoustic streaming field. A critical analysis of the advantages and limitations of different acoustofluidic platforms in nanoparticles control is presented. The article concludes with a summary of the challenges acoustofluidics face in the realm of nanoparticle manipulation and analysis, and a forecast of future development prospects.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ELECTROPHORESISPub Date : 2024-05-24DOI: 10.1002/elps.202400004
Peter J. Reiser, Natalya Belevych, Logan Shope, Beatriz Hanaoka
{"title":"Methanol gel electrophoresis: Separation of human fast and slow myosin light chain 1 and other myofibrillar protein isoforms on a single gel format","authors":"Peter J. Reiser, Natalya Belevych, Logan Shope, Beatriz Hanaoka","doi":"10.1002/elps.202400004","DOIUrl":"10.1002/elps.202400004","url":null,"abstract":"<p>This report describes a novel sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) resolving gel format that consistently yields the electrophoretic separation of the fast and slow isoforms of human sarcomeric myosin light chain 1 (MLC1). The inclusion of methanol as a constituent of the resolving gel impacted the electrophoretic mobility of proteins across a broad range of molecular masses. There was greater separation of the fast and slow isoforms of human MLC1, as well as separation and high resolution of fast and slow isoforms of the three myosin heavy chain isoforms that are expressed in human skeletal muscle on the same gel format. Furthermore, the same resolving gel format substantially altered the electrophoretic mobility of at least one isoform of tropomyosin in human striated muscle. It is possible that the inclusion of methanol in SDS–PAGE resolving gels could improve the separation of other proteins that are expressed in muscle and in other tissues and cell types.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}