Energy technology最新文献

筛选
英文 中文
Methanogen Biocathode Microbial Fuel Cell System That Simultaneously Achieves Cattle-Barn Wastewater Treatment and Carbon Dioxide Utilization
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-12 DOI: 10.1002/ente.202401558
Yuta Nakayasu, Hiroto Nakano, Masaki Umetsu, Koji Yokoyama, Hideyuki Takahashi, Chika Tada
{"title":"Methanogen Biocathode Microbial Fuel Cell System That Simultaneously Achieves Cattle-Barn Wastewater Treatment and Carbon Dioxide Utilization","authors":"Yuta Nakayasu,&nbsp;Hiroto Nakano,&nbsp;Masaki Umetsu,&nbsp;Koji Yokoyama,&nbsp;Hideyuki Takahashi,&nbsp;Chika Tada","doi":"10.1002/ente.202401558","DOIUrl":"https://doi.org/10.1002/ente.202401558","url":null,"abstract":"<p>Microbial fuel cells (MFCs) present a promising alternative to traditional activated sludge treatment for livestock wastewater, offering a carbon-neutral, sustainable approach to wastewater management. Activated sludge treatment requires significant energy input for aeration and produces unpleasant odors. MFCs eliminate the need for energy-intensive aeration, simultaneously generating energy during wastewater treatment. Platinum-based electrodes commonly used in the cathode of MFCs pose a significant cost barrier, necessitating advancements in electrode materials for practical, large-scale application. This study reports on the performance of a continuous methanogen biocathode MFC system engineered to simultaneously treat cattle-barn wastewater and utilize carbon dioxide without 2-bromoethanesulfonic acid (BES). Carbon felt treated with nitric acid without BES successfully reduces methane production by 93%. An MFC configuration utilizing nitric acid-treated carbon felt as the anode and an oak-derived carbon electrode as the cathode effectively treat wastewater and convert CO<sub>2</sub> to methane, yielding a power density of 5.5 mW m<sup>−2</sup> and Coulombic efficiency of 7.3%, approximately twice those without nitric acid treatment and surpassing even the performance of the system with BES treatment. This system represents a promising, low-cost, and environmentally sustainable approach to renewable energy production and livestock wastewater treatment.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202401558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis-Driven Enhancement in Energy Storage Performance of Copper Transition Metal Phosphates for Hybrid Battery-Supercapacitor Systems 合成驱动的用于混合电池-超级电容器系统的过渡金属磷酸盐铜储能性能的提升
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-10 DOI: 10.1002/ente.202401761
Anique Ahmed, Muhammad Ramzan Abdul Karim, Muhammad Usman
{"title":"Synthesis-Driven Enhancement in Energy Storage Performance of Copper Transition Metal Phosphates for Hybrid Battery-Supercapacitor Systems","authors":"Anique Ahmed,&nbsp;Muhammad Ramzan Abdul Karim,&nbsp;Muhammad Usman","doi":"10.1002/ente.202401761","DOIUrl":"https://doi.org/10.1002/ente.202401761","url":null,"abstract":"<p>The tremendous advancements in science and technology have resulted in the invention of electronic devices that require greater energy storage capabilities. Hybrid supercapacitors (SCs) gain promising interest due to their exceptional electrochemical performance similar to batteries (high-energy density) and SCs (high-power density). The excellent performance of the electrode material is significantly influenced by the employed synthesis route. The copper phosphate (Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) nanomaterials are synthesized using hydrothermal and sonochemical techniques. Two- and three-electrode configurations are utilized to evaluate the electrochemical performance of the as-prepared nanomaterials. An incredible specific capacity of 443.86 C g<sup>−1</sup> at 1.4 A g<sup>−1</sup> is achieved through sonochemically obtained nanomaterial (S2). In two-electrode configuration, S2 is used as a positive electrode material to fabricate an asymmetric device, which provides an energy density of 51.2 Wh kg<sup>−1</sup> and power density of 6800 W kg<sup>−1</sup> at 0.9 and 8.0 A g<sup>−1</sup>, respectively. The device also demonstrates an exceptional capacity retention of 93.45% after 1000 galvanostatic charge–discharge cycles at 5 A g<sup>−1</sup>. Overall, the outcomes suggest that the sonochemical method is the most effective approach for the preparation of nanomaterials for next-generation energy storage applications.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Assisted Optimization of Additive Engineering in FAPbI3-Based Perovskite Solar Cells: Achieving High Efficiency and Long-Term Stability
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-10 DOI: 10.1002/ente.202401684
Weihua Qu, Qiang Xie, Yufeng Chen
{"title":"Machine Learning-Assisted Optimization of Additive Engineering in FAPbI3-Based Perovskite Solar Cells: Achieving High Efficiency and Long-Term Stability","authors":"Weihua Qu,&nbsp;Qiang Xie,&nbsp;Yufeng Chen","doi":"10.1002/ente.202401684","DOIUrl":"https://doi.org/10.1002/ente.202401684","url":null,"abstract":"<p>Additive engineering in perovskite solar cells (PSCs) has been proven to enhance device performance, yet comparing the effects of different additives through experimental methods is still a challenge. Herein, machine learning (ML) is used to quantitatively analyze the impact of additive engineering on performance of PSCs, utilizing a dataset with 778 samples and 39 input features. Key features affecting device performance are identified, revealing that alkali metal additives boost short-circuit current, alkylamine additives improve open-circuit voltage, and passivation at A-site defects is more beneficial than at interstitial sites. Using the results gained from the ML approach, the performance of PSCs improves significantly, achieving an efficiency of 23.50%, with <i>V</i><sub>OC</sub> and <i>J</i><sub>SC</sub> values of 1.16 V and 25.35 mA cm<sup>−2</sup>, respectively, markedly higher than those of the control samples.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Chitin Partial Dissolution System for Construction of High-Efficiency Energy Storage Porous Carbon
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-10 DOI: 10.1002/ente.202401599
Zhuoling Gu, Zhigang Xu, Yidan Jing, Taixi Li, Xinran Gai,  Deng, Deqian Meng, Yunzhi Hu, Guochu Tang, Xiaomin Zhang
{"title":"Design of Chitin Partial Dissolution System for Construction of High-Efficiency Energy Storage Porous Carbon","authors":"Zhuoling Gu,&nbsp;Zhigang Xu,&nbsp;Yidan Jing,&nbsp;Taixi Li,&nbsp;Xinran Gai,&nbsp; Deng,&nbsp;Deqian Meng,&nbsp;Yunzhi Hu,&nbsp;Guochu Tang,&nbsp;Xiaomin Zhang","doi":"10.1002/ente.202401599","DOIUrl":"https://doi.org/10.1002/ente.202401599","url":null,"abstract":"<p>Chitin is a cost-effective and abundant resource, enriched with nitrogen and oxygen elements, making it an ideal precursor for carbon-based materials. However, traditional methods for preparing activated carbon from chitin often require substantial amounts of activators and complex carbonization processes, leading to suboptimal energy storage efficiency. This study presents a partial dissolution system achieved by modulating the mass ratio of chitin to activators (KOH and urea) and optimizing freeze-thaw cycles. When chitin/KOH/urea is mixed at a 1:1:1.5 mass ratio and subjected to three freeze-thaw cycles, the resulting porous carbon demonstrates a high specific surface area of 1783 m<sup>2</sup> g<sup>−1</sup> with significant N (4.75%) and O (11.16%) doping. The electrode achieves a specific capacitance of 309.1 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> in a three-electrode system with 6 <span>m</span> KOH as the electrolyte. After 5000 charge–discharge cycles at 5 A g<sup>−1</sup>, the capacitance retention rate remains at 91.08%, indicating excellent cycling stability. When assembled into a symmetrical supercapacitor, it exhibits an energy density of 5.69 Wh kg<sup>−1</sup> at a power density of 4996.1 W kg<sup>−1</sup>, demonstrating remarkable energy storage performance. This work introduces a novel method for preparing chitin-derived porous carbon materials.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Thermal Simulation of Lithium-Ion Batteries for Hybrid/Electric Vehicles
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-09 DOI: 10.1002/ente.202401331
Nicholas Vinten, Ofelia Jianu, Alaa El-Sharkawy, Dipan Arora
{"title":"Transient Thermal Simulation of Lithium-Ion Batteries for Hybrid/Electric Vehicles","authors":"Nicholas Vinten,&nbsp;Ofelia Jianu,&nbsp;Alaa El-Sharkawy,&nbsp;Dipan Arora","doi":"10.1002/ente.202401331","DOIUrl":"https://doi.org/10.1002/ente.202401331","url":null,"abstract":"<p>This paper focuses on the development of a plug-in hybrid vehicle (PHEV) full-vehicle transient thermal model in thermal modelling software to predict the battery surface temperature at various locations. The full-vehicle thermal model consists of a full exhaust piping system, a high-voltage lithium-ion battery pack system, and a battery liquid coolant system. All modes of heat transfer including conduction, forced and natural convection, radiation from the exhaust system, battery cooling, and battery internal heat generation are considered in the model. The full-vehicle model is simulated under various vehicle conditions to represent four standard customer drive cycles. The simulated battery surface temperature at specified points along the battery module surfaces is compared to experimental vehicle test-cell data to provide model validation. Using the results from the transient thermal simulations, prediction of the battery thermal degradation is performed throughout the entire vehicle lifecycle. The thermal degradation is estimated using thermal goals and equivalent exposure times.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202401331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compression-Assisted Improvement of Electrochemical Performances of Carbon Nanotube in Symmetric Supercapacitors
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-09 DOI: 10.1002/ente.202401777
Yunkuo Sun, Baohong Ding, Yonghua Jiao, Wei Sun
{"title":"Compression-Assisted Improvement of Electrochemical Performances of Carbon Nanotube in Symmetric Supercapacitors","authors":"Yunkuo Sun,&nbsp;Baohong Ding,&nbsp;Yonghua Jiao,&nbsp;Wei Sun","doi":"10.1002/ente.202401777","DOIUrl":"https://doi.org/10.1002/ente.202401777","url":null,"abstract":"<p>The unique geometry of carbon nanotubes (CNTs) contributes to their excellent rate capability when used as electrode materials for supercapacitors (SCs). However, the practical application of low-cost commercial CNTs is limited by their moderate specific capacitance due to the relatively low surface area which is around 220 m<sup>2</sup> g<sup>−1</sup>. This limitation can be addressed by applying proper compressive stress to the CNTs, resulting in improved capacitance. The effects of compression on capacitance vary depending on the length and inner diameter of the CNTs, which have been systematically investigated. It has been found that longer and narrower CNTs exhibit more significant improvements in capacitance due to compression. Specifically, under 12 MPa, there is an ≈135% increase in specific capacitance compared to that under 1 MPa, with the optimum value of 68.2 F g<sup>−1</sup> at 1 A g<sup>−1</sup>. An excellent rate capability of 93.5% at 40 A g<sup>−1</sup> is also obtained by compression. Furthermore, when an light emitting diode light is powered by a compressed CNT-based SC, both brightness and lasting time are dramatically enhanced compared to the case without compression. This cost-efficient strategy for improving the energy storage performance of CNTs may facilitate their practical application as electrode materials for ultrafast supercapacitors.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Lithium Storage Performance of Si/C Composites as Anode Materials for Lithium-Ion Batteries: A Review
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-09 DOI: 10.1002/ente.202401313
Jingbo Liu, Yanxia Liu, Zhenzhen Guo, Cheng Qian, Fan Liu, Fengtao Chai, Chongchong Zhao, Feng Huo
{"title":"Preparation and Lithium Storage Performance of Si/C Composites as Anode Materials for Lithium-Ion Batteries: A Review","authors":"Jingbo Liu,&nbsp;Yanxia Liu,&nbsp;Zhenzhen Guo,&nbsp;Cheng Qian,&nbsp;Fan Liu,&nbsp;Fengtao Chai,&nbsp;Chongchong Zhao,&nbsp;Feng Huo","doi":"10.1002/ente.202401313","DOIUrl":"https://doi.org/10.1002/ente.202401313","url":null,"abstract":"<p>\u0000Silicon offers a theoretical specific capacity of up to 4200 mAh g<sup>−1</sup>, positioning it as one of the most promising materials for next-generation lithium-ion batteries (LIBs). However, during lithium insertion and deinsertion, Si undergoes significant volume expansion, leading to rapid capacity degradation, which has limited its application as an anode material in LIBs. To address this issue, coupling Si with carbon enables the combination of the high lithiation capacity of Si with the excellent mechanical strength and electrical conductivity of carbon. This synergy makes silicon/carbon composites (Si/C) ideal candidates for LIB anodes. In this review, recent advancements in Si/C composite materials for LIBs are categorized based on synthesis methods and design principles. The review also summarizes the morphological characteristics and electrochemical performance of these materials. Additionally, other factors influencing the performance of Si/C anodes are discussed, and future development prospects for Si/C anodes are briefly explored.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying Numerical Simulation to Model Varying Process and Cell Parameters during the Electrolyte Filling Process of Lithium-Ion Batteries
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-09 DOI: 10.1002/ente.202401708
Jan Hagemeister, Ahmed Elkhoshet, Atahan Yakici, Florian Günter, Yiping Hu, Rüdiger Daub
{"title":"Applying Numerical Simulation to Model Varying Process and Cell Parameters during the Electrolyte Filling Process of Lithium-Ion Batteries","authors":"Jan Hagemeister,&nbsp;Ahmed Elkhoshet,&nbsp;Atahan Yakici,&nbsp;Florian Günter,&nbsp;Yiping Hu,&nbsp;Rüdiger Daub","doi":"10.1002/ente.202401708","DOIUrl":"https://doi.org/10.1002/ente.202401708","url":null,"abstract":"<p>The electrolyte filling process is considered one of the bottlenecks of lithium-ion battery production due mainly to the long electrolyte wetting times. Additionally, the required experimental process design is time and material-intensive, increasing the development costs of new materials or cell designs. A model of the filling process would allow for more efficient cell production, but until now, the published models have mainly been focused on individual components on a pore scale. Within the scope of this work, the model setup for a holistic examination of the electrolyte filling process is shown, allowing the study of the electrolyte wetting on a cell scale. The characteristic values of a porous medium, such as the permeability, are calculated with a microsimulation of an anode and a cathode pore structure. These values are then transferred to the ANSYS porous media model, and cell scale simulations are performed. Two cell formats and variations in the evacuation pressure and electrolyte temperature are simulated and compared to experimental wetting data. The results show that the simulation successfully models the wetting behavior for the investigated cell formats and cell assembly types, validating the model with experimental data both qualitatively and quantitatively.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202401708","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino-Modified Porous Aromatic Frameworks for Enhanced Lithium-Ion Dissociation and Transport in Polymer Electrolytes
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-09 DOI: 10.1002/ente.202401692
Ruyi Ma, Chengwei Lv, Zhangnan Li
{"title":"Amino-Modified Porous Aromatic Frameworks for Enhanced Lithium-Ion Dissociation and Transport in Polymer Electrolytes","authors":"Ruyi Ma,&nbsp;Chengwei Lv,&nbsp;Zhangnan Li","doi":"10.1002/ente.202401692","DOIUrl":"https://doi.org/10.1002/ente.202401692","url":null,"abstract":"<p>Enhancing the ionic conductivity of solid polymer electrolytes and accelerating ion transport are pivotal challenges in achieving lithium-ion batteries with high energy density and excellent electrochemical performance. In this study, amino-modified porous aromatic frameworks (AMPAF) are prepared. The amino group in AMPAF stabilizes the anion through hydrogen bonding to reduce the dissociation energy barrier of Li<sup>+</sup>, enabling Li<sup>+</sup> to be more easily dissociated from lithium salts. Additionally, the abundant pores of AMPAF promote the rapid transport of Li<sup>+</sup>. The prepared quasi-solid polymer electrolyte (AMPAF-QSPE) exhibited a high Li<sup>+</sup> conductivity of 7.62 × 10<sup>−5</sup> S cm<sup>−1</sup> and a Li<sup>+</sup> transference number as high as 0.55, which proves the restriction of the amino group in AMPAF on the movement of anions and the ability to dissociate lithium salts. The discharge specific capacity of Li//AMPAF-QSPE//LiFePO<sub>4</sub> reached as high as 137 mAh g<sup>−1</sup> at 0.2 °C, and the capacity retention rate was stable at 85% after 200 cycles. This article presents an effective attempt to enhance the overall performance of polymer electrolytes using amino-modified PAF, offering an innovative perspective for the development of electrochemical energy storage technologies.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Assessment of a Linear Drive-Controlled Tilt-Roll Heliostat with Sun Tracking Algorithm for Small-Scale Solar Installation
IF 3.6 4区 工程技术
Energy technology Pub Date : 2024-12-08 DOI: 10.1002/ente.202401051
Adithyan TR, Sreeram K. Kalpathy, Tiju Thomas
{"title":"Design and Assessment of a Linear Drive-Controlled Tilt-Roll Heliostat with Sun Tracking Algorithm for Small-Scale Solar Installation","authors":"Adithyan TR,&nbsp;Sreeram K. Kalpathy,&nbsp;Tiju Thomas","doi":"10.1002/ente.202401051","DOIUrl":"https://doi.org/10.1002/ente.202401051","url":null,"abstract":"<p>Heliostats are devices used for solar concentration that use mirrors oriented according to the position of the sun. A heliostat's main function is to redirect sunlight for use in a variety of applications, including heating, lighting, scientific research, and solar power generation. The two-axis tracking employed in the device ensures that the reflected irradiance is aimed at a predetermined target. The design and evaluation of a tilt-roll two-axis tracking heliostat are presented in this article. The model consists of a mirror 0.45 m in width and 0.45 m in length installed on a pedestal of height 0.75 m. The motion of the heliostat is controlled using two separate linear drives via a sun-tracking algorithm implemented in a microcontroller. A small-scale tilt-roll design with a reflective area (mirror) of 0.2025 m<sup>2</sup> is established. This novel design eliminates the need for commercially available solar tracking systems and can be deployed in areas of limited installation space. Dual-axis heliostat design used here provides an effective way to track the sun's movement for maximum solar energy capture by combining tilt and roll mechanisms. This design ensures tracking precision for optimal solar energy concentration making it well-suited for experimental and smaller-scale deployments.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 3","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信