人体下肢运动中多关节能量恢复的协同整合:生物力学探索

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Limin Ren, En Jiang, Shixun Li, Yang Zhou, Xuewen Sun, Enhe Kou, Ruijie Zhang, Yisong Tan
{"title":"人体下肢运动中多关节能量恢复的协同整合:生物力学探索","authors":"Limin Ren,&nbsp;En Jiang,&nbsp;Shixun Li,&nbsp;Yang Zhou,&nbsp;Xuewen Sun,&nbsp;Enhe Kou,&nbsp;Ruijie Zhang,&nbsp;Yisong Tan","doi":"10.1002/ente.202402140","DOIUrl":null,"url":null,"abstract":"<p>Current energy harvesting devices in the field of human lower limb energy recovery have the problems of low energy recovery efficiency and large mass and volume. To solve these problems, this article proposes a multijoint synergistic energy recovery device based on the concept of synergistic energy recovery, with the aim of allowing one energy harvester to collect negative work from multiple joints simultaneously. The recovery efficiency of the harvester is improved by increasing the energy recovery source. The mechanism achieves synergistic recovery of negative work in multiple joints of the human lower limb. The mechanical structure consists of a four-bar mechanism, limit switches, a planetary gear system, and a differential mechanism to complete the energy capture and coupling. Multiple energy streams are superimposed in an orderly manner without loss. The experimental results demonstrate the efficient output of this harvester in collecting and coupling energy in the negative work zone of the knee and hip joints. This integrated multijoint energy harvester achieves an output voltage of 118 V under normal human walking conditions. The device achieves a power output of 3.21 W and a power density of 7.32 W kg<sup>−1</sup> at 2 Hz.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergetic Integration of Energy Recovery across Multiple Joint in Human Lower Limb Motion: A Biomechanical Exploration\",\"authors\":\"Limin Ren,&nbsp;En Jiang,&nbsp;Shixun Li,&nbsp;Yang Zhou,&nbsp;Xuewen Sun,&nbsp;Enhe Kou,&nbsp;Ruijie Zhang,&nbsp;Yisong Tan\",\"doi\":\"10.1002/ente.202402140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current energy harvesting devices in the field of human lower limb energy recovery have the problems of low energy recovery efficiency and large mass and volume. To solve these problems, this article proposes a multijoint synergistic energy recovery device based on the concept of synergistic energy recovery, with the aim of allowing one energy harvester to collect negative work from multiple joints simultaneously. The recovery efficiency of the harvester is improved by increasing the energy recovery source. The mechanism achieves synergistic recovery of negative work in multiple joints of the human lower limb. The mechanical structure consists of a four-bar mechanism, limit switches, a planetary gear system, and a differential mechanism to complete the energy capture and coupling. Multiple energy streams are superimposed in an orderly manner without loss. The experimental results demonstrate the efficient output of this harvester in collecting and coupling energy in the negative work zone of the knee and hip joints. This integrated multijoint energy harvester achieves an output voltage of 118 V under normal human walking conditions. The device achieves a power output of 3.21 W and a power density of 7.32 W kg<sup>−1</sup> at 2 Hz.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402140\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402140","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

目前人体下肢能量回收领域的能量收集装置存在能量回收效率低、质量体积大等问题。针对这些问题,本文提出了一种基于协同能量回收概念的多关节协同能量回收装置,其目的是让一台能量采集器同时收集多个关节的负功。通过增加能量回收源,提高了收割机的回收效率。该机制实现了人体下肢多个关节负功的协同恢复。机械结构由四杆机构、限位开关、行星齿轮系统和差动机构组成,完成能量捕获和耦合。多个能量流以有序的方式叠加而没有损失。实验结果表明,该收割机在膝关节和髋关节负工作区的能量收集和耦合方面具有良好的输出效率。这种集成的多关节能量采集器在正常人类行走条件下的输出电压为118v。在2hz时,器件输出功率为3.21 W,功率密度为7.32 W kg−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergetic Integration of Energy Recovery across Multiple Joint in Human Lower Limb Motion: A Biomechanical Exploration

Current energy harvesting devices in the field of human lower limb energy recovery have the problems of low energy recovery efficiency and large mass and volume. To solve these problems, this article proposes a multijoint synergistic energy recovery device based on the concept of synergistic energy recovery, with the aim of allowing one energy harvester to collect negative work from multiple joints simultaneously. The recovery efficiency of the harvester is improved by increasing the energy recovery source. The mechanism achieves synergistic recovery of negative work in multiple joints of the human lower limb. The mechanical structure consists of a four-bar mechanism, limit switches, a planetary gear system, and a differential mechanism to complete the energy capture and coupling. Multiple energy streams are superimposed in an orderly manner without loss. The experimental results demonstrate the efficient output of this harvester in collecting and coupling energy in the negative work zone of the knee and hip joints. This integrated multijoint energy harvester achieves an output voltage of 118 V under normal human walking conditions. The device achieves a power output of 3.21 W and a power density of 7.32 W kg−1 at 2 Hz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信