Impedance Spectroscopic and Electrical Equivalent Circuit Analysis of Indium Tin Oxide/n-CdS/p-Si Heterojunction Solar Cell Using SCAPS-1d and Impedance Spectroscopic Modules
{"title":"Impedance Spectroscopic and Electrical Equivalent Circuit Analysis of Indium Tin Oxide/n-CdS/p-Si Heterojunction Solar Cell Using SCAPS-1d and Impedance Spectroscopic Modules","authors":"Prakash Kumar Jha, Ritesh Kumar Chourasia, Ankita Srivastava, Atish Kumar Sharma, Keyur Sangani, Nitesh K. Chourasia","doi":"10.1002/ente.202402031","DOIUrl":null,"url":null,"abstract":"<p>The impedance spectroscopic (IS) and electrical equivalent circuit analysis of the popular combination indium tin oxide/n-CdS/p-Si heterojunction solar cell is being carried out for the very first time in this analytical study using solar cell capacitance simulator (SCAPS)-1d and the IS module. In this analysis, it is aimed to uncover the device's inherent characteristics for the purpose of future advancements and improvements. Various characteristics and features, as well as the basis for future device improvements, are uncovered through rigorous analysis of the following variables: forward/reverse bias voltage, frequency, illumination intensities (dark and light mode), wavelength-dependent capacitance–voltage, conductance-voltage, capacitance–frequency, and capacitance–temperature. Additionally, spectral response (SR) charts that rely on wavelength are created in addition to Nyquist and Bode plots. The acquired impedance data is much enhanced by these displays. Through IS analysis, a potent method for investigating the dynamics of electrical and ionic charges inside cells is revealed. An improved comprehension of the internal voltage and doping profile in the layers is achieved through additional Mott–Schottky analysis. Bode graphs that rely on frequency provide a better way to comprehend the device's dielectric characteristics. The SR curve can be better understood with the help of these graphs.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The impedance spectroscopic (IS) and electrical equivalent circuit analysis of the popular combination indium tin oxide/n-CdS/p-Si heterojunction solar cell is being carried out for the very first time in this analytical study using solar cell capacitance simulator (SCAPS)-1d and the IS module. In this analysis, it is aimed to uncover the device's inherent characteristics for the purpose of future advancements and improvements. Various characteristics and features, as well as the basis for future device improvements, are uncovered through rigorous analysis of the following variables: forward/reverse bias voltage, frequency, illumination intensities (dark and light mode), wavelength-dependent capacitance–voltage, conductance-voltage, capacitance–frequency, and capacitance–temperature. Additionally, spectral response (SR) charts that rely on wavelength are created in addition to Nyquist and Bode plots. The acquired impedance data is much enhanced by these displays. Through IS analysis, a potent method for investigating the dynamics of electrical and ionic charges inside cells is revealed. An improved comprehension of the internal voltage and doping profile in the layers is achieved through additional Mott–Schottky analysis. Bode graphs that rely on frequency provide a better way to comprehend the device's dielectric characteristics. The SR curve can be better understood with the help of these graphs.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.