Zhe Li, Lin Fang, Leilei Shu, Feixiang Wang, Jin Wu, Zixun Wang, Haonan Zhang, Peihong Wang
{"title":"基于串联电阻增强摩擦纳米发电机的自供电振动传感和能量收集与电荷补偿的自主报警系统","authors":"Zhe Li, Lin Fang, Leilei Shu, Feixiang Wang, Jin Wu, Zixun Wang, Haonan Zhang, Peihong Wang","doi":"10.1002/ente.202402284","DOIUrl":null,"url":null,"abstract":"<p>The ability to efficiently harvest energy while accurately sensing signals with a single device is a critical focus in self-powered vibration monitoring systems and an urgent requirement for the highly integrated development of the Internet of Things (IoT). This work presents a triboelectric nanogenerator that combines energy harvesting with vibration signal sensing (SE-TENG). By connecting a sensing resistor with a sensing triboelectric nanogenerator (S-TENG) in series and using the S-TENG as a pump-TENG to provide charge to the energy harvesting triboelectric nanogenerator (E-TENG), this approach effectively utilizes the energy from the S-TENG component, reducing energy loss. Under vibration excitation with 0.6 mm amplitude, the output voltage of SE-TENG remains above 200 V in 12–30 Hz. Additionally, we implement an external limiter strategy to limit the displacement of the moving part, which optimizes the waveform of the sensing signal. Based on SE-TENG, we have successfully realized self-driven wireless temperature and humidity monitoring, self-driven vibration frequency sensing alarm, and self-driven amplitude monitoring alarm. This work provides a new idea for TENG to get both energy and signal in the field of vibration energy collection and sensing, and has potential application in the integrated development of the IoT.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Powered Vibration Sensing and Energy Harvesting via Series-Resistor-Enhanced Triboelectric Nanogenerators with Charge Compensation for Autonomous Alarm Systems\",\"authors\":\"Zhe Li, Lin Fang, Leilei Shu, Feixiang Wang, Jin Wu, Zixun Wang, Haonan Zhang, Peihong Wang\",\"doi\":\"10.1002/ente.202402284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to efficiently harvest energy while accurately sensing signals with a single device is a critical focus in self-powered vibration monitoring systems and an urgent requirement for the highly integrated development of the Internet of Things (IoT). This work presents a triboelectric nanogenerator that combines energy harvesting with vibration signal sensing (SE-TENG). By connecting a sensing resistor with a sensing triboelectric nanogenerator (S-TENG) in series and using the S-TENG as a pump-TENG to provide charge to the energy harvesting triboelectric nanogenerator (E-TENG), this approach effectively utilizes the energy from the S-TENG component, reducing energy loss. Under vibration excitation with 0.6 mm amplitude, the output voltage of SE-TENG remains above 200 V in 12–30 Hz. Additionally, we implement an external limiter strategy to limit the displacement of the moving part, which optimizes the waveform of the sensing signal. Based on SE-TENG, we have successfully realized self-driven wireless temperature and humidity monitoring, self-driven vibration frequency sensing alarm, and self-driven amplitude monitoring alarm. This work provides a new idea for TENG to get both energy and signal in the field of vibration energy collection and sensing, and has potential application in the integrated development of the IoT.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402284\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402284","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Self-Powered Vibration Sensing and Energy Harvesting via Series-Resistor-Enhanced Triboelectric Nanogenerators with Charge Compensation for Autonomous Alarm Systems
The ability to efficiently harvest energy while accurately sensing signals with a single device is a critical focus in self-powered vibration monitoring systems and an urgent requirement for the highly integrated development of the Internet of Things (IoT). This work presents a triboelectric nanogenerator that combines energy harvesting with vibration signal sensing (SE-TENG). By connecting a sensing resistor with a sensing triboelectric nanogenerator (S-TENG) in series and using the S-TENG as a pump-TENG to provide charge to the energy harvesting triboelectric nanogenerator (E-TENG), this approach effectively utilizes the energy from the S-TENG component, reducing energy loss. Under vibration excitation with 0.6 mm amplitude, the output voltage of SE-TENG remains above 200 V in 12–30 Hz. Additionally, we implement an external limiter strategy to limit the displacement of the moving part, which optimizes the waveform of the sensing signal. Based on SE-TENG, we have successfully realized self-driven wireless temperature and humidity monitoring, self-driven vibration frequency sensing alarm, and self-driven amplitude monitoring alarm. This work provides a new idea for TENG to get both energy and signal in the field of vibration energy collection and sensing, and has potential application in the integrated development of the IoT.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.