{"title":"Construction of Acceptor-Multi-F State Electrolyte to Enable Unprecedented Long-Life and High-Capacity Fluoride-Ion Batteries","authors":"Decheng Li, Guyue Li, Yifan Yu, Chilin Li","doi":"10.1002/adma.202415106","DOIUrl":"https://doi.org/10.1002/adma.202415106","url":null,"abstract":"Fluoride ion batteries (FIBs) have garnered significant attention due to their ultrahigh theoretical energy density, dendrite-free safety, and resource abundance. Although some anion acceptors have been proposed to address the insolubility of inorganic fluoride salts, the difficulty in dissociating fluoride ions from acceptors results in short lifespan and extremely low specific capacity of FIBs. Here, a fluoride ion battery is demonstrated with unprecedented long life and ultrahigh specific capacity through the design of an acceptor-multi-F state electrolyte. The high Lewis acidity of triphenylantimony chloride (TSbCl) as a novel anion acceptor in electrolyte facilitates the complete dissociation of CsF, and the resulting TSbCl-F complex can further interact with fluoride ions to form the acceptor-multi-F states. This strategy combines the high dissociation capability for fluoride salts with the minimal thermodynamic barriers for releasing fluoride ions at electrode-electrolyte interface. This electrolyte design endows FIBs with durable reversible fluorination/defluorination reaction (3700 cycles with high coulombic efficiency of 99.5% and small voltage polarization of 30 mV) and ultrahigh reversible capacity (580 mAh g<sup>−1</sup> after 40 cycles at 100 mA g<sup>−1</sup>). The high-output voltage FIBs of CuF<sub>2</sub>//Li configuration (with discharge plateau of 2.9 V) and larger-sized pouch-type FIBs of CuF<sub>2</sub>//Sn+SnF<sub>2</sub> configuration (with reversible capacity of 530 mAh g<sup>−1</sup>) are demonstrated.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"69 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Zong, Minjie Xi, Yunqi Wang, Guohonghao Zeng, Dongliang Hu, Huihui Hu, Xiaoqi Hou, Kewang Nan, Xiangzhong Chen, Fan Xu, Oliver G. Schmidt, Yongfeng Mei, Jizhai Cui
{"title":"Waveguide Microactuators Self-Rolled Around an Optical Fiber Taper","authors":"Yang Zong, Minjie Xi, Yunqi Wang, Guohonghao Zeng, Dongliang Hu, Huihui Hu, Xiaoqi Hou, Kewang Nan, Xiangzhong Chen, Fan Xu, Oliver G. Schmidt, Yongfeng Mei, Jizhai Cui","doi":"10.1002/adma.202418316","DOIUrl":"https://doi.org/10.1002/adma.202418316","url":null,"abstract":"Precisely capturing and manipulating microscale objects, such as individual cells and microorganisms, is fundamental to advancements in biomedical research and microrobotics. Photoactuators based on optical fibers serving as flexible, unobstructed waveguides are well-suited for these operations, particularly in confined locations where free-space illumination is impractical. However, integrating optical fibers with microscale actuators poses significant challenges due to size mismatch, resulting in slow responses inadequate for handling motile micro-objects. This study designs microactuators based on hydrogel/Au bilayer heterostructures that self-roll around a tapered optical fiber. This self-rolling mechanism enables the use of thin hydrogel layers only a few micrometers thick, which rapidly absorb and release water molecules during a phase transition. The resulting microactuators exhibit low bending stiffness and extremely fast responses, achieving large bending angles exceeding 800° within 0.55 s. Using this technique, this study successfully captures rapidly swimming Chlamydomonas and Paramecium, and demonstrates programmable non-reciprocal motion for effective non-contact manipulation of yeast cells. This approach provides a versatile platform for microscale manipulations and holds promise for advanced biomedical applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"9 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenghong Xiong, Yun-Sung Jeon, Hongguang Wang, Guiming Fu, Seong-Ho Cho, Seung-Joo Chang, Peter A. van Aken, Nam-Gyu Park
{"title":"Triple-Additive Strategy for Enhanced Material and Device Stability in Perovskite Solar Cells","authors":"Zhenghong Xiong, Yun-Sung Jeon, Hongguang Wang, Guiming Fu, Seong-Ho Cho, Seung-Joo Chang, Peter A. van Aken, Nam-Gyu Park","doi":"10.1002/adma.202413712","DOIUrl":"https://doi.org/10.1002/adma.202413712","url":null,"abstract":"The stability of the FAPbI<sub>3</sub> perovskite phase is significantly affected by internal strain. In this report, additives in the perovskite precursor solution are designed to prevent local lattice mismatch of the resulting perovskite layer. Instead of using a conventional methylammonium chloride (<i>Control</i>), triple additives (<i>Target</i>) are introduced by considering ion association and formation energy. The out-of-plane orientation for the (100) plane is less pronounced by the triple additives compared to the <i>Control</i> film with a highly enhanced preferred orientation, which reduces the strain gradient and the Pb─I bond distance. Moreover, the anisotropic atomic-level lattice strain along (111) plane, associated with the <i>α</i>-to-<i>δ</i> phase transition, is more uniformly distributed by the triple additives. The triple-additive strategy demonstrates exceptional phase stability under relative humidity as high as 90% and the International Summit on Organic Photovoltaic Stability (ISOS)-L-2 protocol. The device lifetime measured under the ISOS-D-1 condition shows that the <i>Target</i> perovskite solar cell (PSC) maintains 95% of its initial power conversion efficiency (PCE) for over 8000 h, and the best PCE of 24.50% is achieved.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"23 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances and Outlooks for Carbon Nanotube-Based Thermoelectric Materials and Devices","authors":"Shanshan Zhou, Xiao-Lei Shi, Lan Li, Qian Liu, Boxuan Hu, Wenyi Chen, Chenyang Zhang, Qingfeng Liu, Zhi-Gang Chen","doi":"10.1002/adma.202500947","DOIUrl":"https://doi.org/10.1002/adma.202500947","url":null,"abstract":"The unique structure of carbon nanotubes (CNTs) endows them with exceptional electrical and mechanical properties, along with a high surface area, making them highly beneficial for use as flexible, high-performing thermoelectric materials. As a result, the application of CNTs in the thermoelectric field has become increasingly widespread. Considering the rapid advancements in this field, this review offers a timely overview of the most recent progress on CNT-based thermoelectric materials and devices over the past five years. This review begins by introducing the fundamental concepts and thermoelectric mechanisms of CNT-based thermoelectric materials. Then new strategies are explored to enhance their thermoelectric performance, focusing on doping and composites, while emphasizing the importance of CNT stability as a key research area. Additionally, the latest design concepts and expanded application scenarios for flexible and wearable CNTs-based thermoelectric devices are summarized. Finally, the current challenges are addressed and future directions for the development of CNT-based thermoelectric materials and devices are discussed.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"180 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryo-Shocked Tumor-Reprogrammed Sonosensitive Antigen-Presenting Cells Improving Sonoimmunotherapy via T Cells and NK Cells Immunity","authors":"Xindi Qian, Wenzhe Yi, Wenlu Yan, Ying Cai, Shuangshuang Hu, Dan Yan, Zhiwen Zhao, Rongzhang Li, Liying Wang, Huixiong Xu, Yaping Li","doi":"10.1002/adma.202413289","DOIUrl":"https://doi.org/10.1002/adma.202413289","url":null,"abstract":"Ultrasound therapy has turned up as a noninvasive multifunctional tool for cancer immunotherapy. However, the insufficient co-stimulating molecules and loss of peptide-major histocompatibility complex I (MHC-I) expression on tumor cells lead to poor therapy of sonoimmunotherapies. Herein, this work develops a sonosensitive system to augment MHC-I unrestricted natural killer (NK) cell-mediated innate immunity and T cell-mediated adaptive immunity by leveraging antigen presentation cell (APC)-like tumor cells. Genetically engineered tumor cells featuring sufficient co-stimulating molecules are cryo-shocked and conjugated with a sonosensitizer, hematoporphyrin monomethyl ether, using click chemistry. These cells (DPNLs) exhibit characteristics of tumor and draining lymph node homing. Under ultrasound, NK cell-mediated innate immunity within the tumor microenvironment could be activated, and T cells in the tumor-draining lymph nodes (TDLNs) are stimulated through co-stimulatory molecules. In combination with programmed cell death ligand 1 (PD-L1) antibody, DPNLs extend the survival time and inhibited lung metastasis in triple-negative breast cancer (TNBC) models. This study provides an alternative approach for sonoimmunotherapy with precise sonosensitizer delivery and enhanced NK cell and T cell activation.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"64 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All-Climate Energy-Dense Cascade Aqueous Zn-I2 Batteries Enabled by a Polycationic Hydrogel Electrolyte","authors":"Yangyang Liu, Longhai Zhang, Ling Liu, Quanwei Ma, Rui Wang, Peng Xiong, Hongbao Li, Shilin Zhang, Junnan Hao, Chaofeng Zhang","doi":"10.1002/adma.202415979","DOIUrl":"https://doi.org/10.1002/adma.202415979","url":null,"abstract":"The practical development of aqueous zinc-iodine (Zn-I<sub>2</sub>) batteries is greatly hindered by the low energy density resulting from conventional I<sup>0</sup>/I<sup>−</sup> conversion and the limited temperature tolerance. Here, a temperature-insensitive polycationic hydrogel electrolyte borax-bacterial cellulose / <i>p</i>(AM-<i>co</i>-VBIMBr) (denoted as BAVBr) for achieving an energy-dense cascade aqueous Zn-I<sub>2</sub> battery over a wide temperature range from −50 to 50 °C is designed. A comprehensive investigation, combining advanced spectroscopic investigation and DFT calculations, has revealed that the presence of Br species in the gel electrolyte facilitates the conversion reaction of Br<sup>0</sup>/Br<sup>−</sup>. Simultaneously, it activates the high voltage I<sup>+</sup>/I<sup>0</sup> redox reaction through interhalogen formation. Consequently, sequential and highly reversible redox reactions involving I<sup>0</sup>/I<sup>−</sup>, I<sup>+</sup>/I<sup>0</sup>, and Br<sup>0</sup>/Br<sup>−</sup> are achieved with the assistance of −NR<sub>3</sub><sup>+</sup> units in BAVBr, effectively suppressing interhalogen hydrolysis in aqueous electrolyte. The cascade reactions lead to a high area capacity of 0.76 mAh cm<sup>−2</sup> at a low I<sub>2</sub> loading of 1 mg cm<sup>−2</sup> or 760 mAh g<sup>−1</sup> based on the mass of iodine, demonstrating exceptional long-term cycling stability over a wide temperature range from −50 to 50 °C. This study offers valuable insights into the rational design of electrolytes for high-energy aqueous batteries, specifically tailored for wide-temperature operation.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"11 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DNA-Capturing Manganese-Coordinated Chitosan Microparticles Potentiate Radiotherapy via Activating the cGAS-STING Pathway and Maintaining Tumor-Infiltrating CD8+ T-Cell Stemness","authors":"Shuai Zhang, Chunjie Wang, Yujie Zhu, Juxin Gao, Yifan Yan, Minming Chen, Xiaoying Yan, Zhuang Liu, Liangzhu Feng","doi":"10.1002/adma.202418583","DOIUrl":"https://doi.org/10.1002/adma.202418583","url":null,"abstract":"The radiotherapy-induced release of DNA fragments can stimulate the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway to prime antitumor immunity, but this pathway is expected to be less potent because of the inefficient cytosolic delivery of negatively charged DNA fragments. In this study, manganese-coordinated chitosan (CS-Mn) microparticles with selective DNA-capturing capacity are concisely prepared via a coordination-directed one-pot synthesis process to potentiate the immunogenicity of radiotherapy. The obtained CS-Mn microparticles that undergo rapid disassembly under physiological conditions can selectively bind with DNA to form positively charged DNA-CS assemblies because of the strong electrostatic interaction between linear chitosan and DNA molecules. They thus enable efficient cytosolic delivery of DNA in the presence of serum to cooperate with Mn<sup>2+</sup> to activate the cGAS-STING pathway in dendritic cells. Upon intratumoral injection, the CS-Mn microparticles markedly enhance the efficacy of radiotherapy against both irradiated and distal tumors in different tumor models via collectively promoting tumor-infiltrating CD8<sup>+</sup> T-cell stemness and the activation of innate immunity. The radiosensitization effect of CS-Mn microparticles can be further augmented by concurrently applying anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. This work highlights an ingenious strategy to prepare Trojan horse-like DNA-capturing microparticles as cGAS-STING-activating radiosensitizers for effective radioimmunotherapy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"48 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbing Organelle-Level K+/Ca2+ Homeostasis by Nanotherapeutics for Enhancing Ion-Mediated Cancer Immunotherapy","authors":"Jun-Long Liang, Qian-Xiao Huang, Qi-Wen Chen, Xiao-Kang Jin, Zi-Yi Han, Ping Ji, Si-Xue Cheng, Wei-Hai Chen, Xian-Zheng Zhang","doi":"10.1002/adma.202416574","DOIUrl":"https://doi.org/10.1002/adma.202416574","url":null,"abstract":"Intracellular ions are involved in numerous pivotal immune processes, but the precise regulation of these signaling ions to achieve innovative immune therapeutic strategies is still a huge challenge. Here, an ion-mediated immunotherapy agent (IMIA) is engineered to achieve precise spatiotemporal control of perturbing K<sup>+</sup>/Ca<sup>2+</sup> homeostasis at the organelle-level, thereby amplifying antitumor immune responses to achieve high-performance cancer therapy. By taking in intracellular K<sup>+</sup> and supplying exogenous Ca<sup>2+</sup> within tumor cells, K<sup>+</sup>/Ca<sup>2+</sup> homeostasis is perturbed by IMIA. In parallel, perturbing K<sup>+</sup> homeostasis induced endoplasmic reticulum (ER) stress triggers the release of Ca<sup>2+</sup> from ER and causes a decreased concentration of Ca<sup>2+</sup> in ER, which further accelerates ER-mitochondria Ca<sup>2+</sup> flux and the influx of extracellular Ca<sup>2+</sup> (store-operated Ca<sup>2+</sup> entry (SOCE)) via opening Ca<sup>2+</sup> release-activated Ca<sup>2+</sup> (CRAC) channels, thus creating a self-amplifying ion interference loop to perturb K<sup>+</sup>/Ca<sup>2+</sup> homeostasis. In this process, the elevated immunogenicity of tumor cells would evoke robust antitumor immune responses by driving the excretion of damage-associated molecular patterns (DAMPs). Importantly, this ion-immunotherapy strategy reshapes the immunosuppressive tumor microenvironment (TME), and awakens the systemic immune response and long-term immune memory effect, thus effectively inhibiting the growth of primary/distant tumors, orthotopic tumors as well as metastatic tumors in different mice models.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"63 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lili Luo, Hong Huang, Lu Yang, Rui Hao, Xiaoliang Hu, Yingtao Li, Xiaolong Zhao, Zemin Zhang, Shibing Long
{"title":"Ultra-Fast Gallium Oxide Solar-Blind Photodetector with Novel Thermal Pulse Treatment","authors":"Lili Luo, Hong Huang, Lu Yang, Rui Hao, Xiaoliang Hu, Yingtao Li, Xiaolong Zhao, Zemin Zhang, Shibing Long","doi":"10.1002/adma.202414130","DOIUrl":"https://doi.org/10.1002/adma.202414130","url":null,"abstract":"Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) emerges as a promising solar-blind photodetector (SBPD) material if the “Response Speed (RS) dilemma” can be resolved. Devices with spatially segregated carrier generation and transport channels offer a potential solution but remain less available. This work introduces a novel thermal pulse treatment (TPT) method to achieve a vertically stratified crystalline structure and oxygen vacancies (V<sub>O</sub>) throughout the Ga<sub>2</sub>O<sub>3</sub> film, validated through extensive characterizations. Technology Computer-Aided Design (TCAD) simulations corroborated the critical role of V<sub>O</sub> stratification in enhancing the responsivity (R<sub>λ</sub>) and response speed simultaneously. Consequently, the TPT-processed SBPD exhibited exceptional performance, boasting a maximum <i>R</i><sub>λ</sub> of 312.6 A W<sup>−1</sup> and a faster decay time of 40 µs, respectively. Moreover, the corresponding SBPD chips show significant potential for applications in solar-blind imaging, light trajectory tracking, and solar-blind power meters. This work thus provides a viable strategy to address the “RS dilemma” common in most wide-bandgap materials, showcasing excellent application value.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"11 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bio-Inspired, Miniaturized Magnetic Heart Valve System for Superior Performance Cardiovascular Simulator","authors":"Jeongmin Yoo, Gooyoon Chung, Yoonseok Park","doi":"10.1002/adma.202419504","DOIUrl":"https://doi.org/10.1002/adma.202419504","url":null,"abstract":"The demand for accurate vascular simulators is increasing to facilitate effective clinical studies on cardiovascular diseases. The research presents the miniaturized design and precise programable regulation of an artificial magnetic heart valve inspired by the human aortic valve, demonstrating the diverse types of pulsating waves. The heart valve is constructed using an elastomeric silicone composite embedded with neodymium magnetic micro-particles. This valve system responds rapidly to changes in magnetic fields controlled by miniaturized electromagnets, enabling precise regulation of fluid pressure and flow rate. This allows for the generation of various pressure waveforms and accurately replicates diverse blood pressure changes with a compact design. The design, working mechanism, fabrication process, and optimization of the magnetically controlled biomimetic heart valve are discussed and its performance as a cardiovascular simulator for human and animal models is evaluated. This artificial valve system has the potential to be utilized in humanoid robots to generate heart-like pressure, thereby paving the way for replicating human physiological characteristics. This research promises significant advancements in cardiovascular clinical trials and biomedical research along with the development of humanoid robots and biomimetic mechanical systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"15 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}