Advanced Materials最新文献

筛选
英文 中文
Interface Engineering of 2D Materials toward High-Temperature Electronic Devices
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202418439
Wenxin Wang, Chenghui Wu, Zonglin Li, Kai Liu
{"title":"Interface Engineering of 2D Materials toward High-Temperature Electronic Devices","authors":"Wenxin Wang, Chenghui Wu, Zonglin Li, Kai Liu","doi":"10.1002/adma.202418439","DOIUrl":"https://doi.org/10.1002/adma.202418439","url":null,"abstract":"High-temperature electronic materials and devices are highly sought after for advanced applications in aerospace, high-speed automobiles, and deep-well drilling, where active or passive cooling mechanisms are either insufficient or impractical. 2D materials (2DMs) represent promising alternatives to traditional silicon and wide-bandgap semiconductors (WBG) for nanoscale electronic devices operating under high-temperature conditions. The development of robust interfaces is essential for ensuring that 2DMs and their devices achieve high performance and maintain stability when subjected to elevated temperatures. This review summarizes recent advancements in the interface engineering of 2DMs for high-temperature electronic devices. Initially, the limitations of conventional silicon-based materials and WBG semiconductors, alongside the advantages offered by 2DMs, are examined. Subsequently, strategies for interface engineering to enhance the stability of 2DMs and the performance of their devices are detailed. Furthermore, various interface-engineered 2D high-temperature devices, including transistors, optoelectronic devices, sensors, memristors, and neuromorphic devices, are reviewed. Finally, a forward-looking perspective on future 2D high-temperature electronics is presented. This review offers valuable insights into emerging 2DMs and their applications in high-temperature environments from both fundamental and practical perspectives.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"85 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double Confinement Design to Access Highly Stable Intermetallic Nanoparticles for Fuel Cells 通过双重约束设计获得用于燃料电池的高稳定性金属间纳米粒子
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202417095
Lin Tian, Xiaoping Gao, Mengzhao Zhu, Zixiang Huang, Bei Wu, Cai Chen, Xianhui Ma, Yaner Ruan, Wenxin Guo, Xiangmin Meng, Huijuan Wang, Wubin Du, Shengnan He, Hongge Pan, Xusheng Zheng, Zhijun Wu, Huang Zhou, Jing Xia, Yuen Wu
{"title":"Double Confinement Design to Access Highly Stable Intermetallic Nanoparticles for Fuel Cells","authors":"Lin Tian, Xiaoping Gao, Mengzhao Zhu, Zixiang Huang, Bei Wu, Cai Chen, Xianhui Ma, Yaner Ruan, Wenxin Guo, Xiangmin Meng, Huijuan Wang, Wubin Du, Shengnan He, Hongge Pan, Xusheng Zheng, Zhijun Wu, Huang Zhou, Jing Xia, Yuen Wu","doi":"10.1002/adma.202417095","DOIUrl":"https://doi.org/10.1002/adma.202417095","url":null,"abstract":"Maintaining the stability of low Pt catalysts during prolonged operation of proton exchange membrane fuel cells (PEMFCs) remains a substantial challenge. Here, a double confinement design is presented to significantly improve the stability of intermetallic nanoparticles while maintaining their high catalytic activity toward PEMFCs. First, a carbon shell is coated on the surface of nanoparticles to form carbon confinement. Second, O<sub>2</sub> is introduced during the annealing process to selectively etch the carbon shell to expose the active surface, and to induce the segregation of surface transition metals to form Pt-skin confinement. Overall, the intermetallic nanoparticles are protected by carbon confinement and Pt-skin confinement to withstand the harsh environment of PEMFCs. Typically, the double confined Pt<sub>1</sub>Co<sub>1</sub> catalyst exhibits an exceptional mass activity of 1.45 A mg<sub>Pt</sub><sup>−1</sup> at 0.9 V in PEMFCs tests, with only a 17.3% decay after 30 000 cycles and no observed structure changes, outperforming most reported PtCo catalysts and DOE 2025 targets. Furthermore, the carbon confinement proportion can be controlled by varying the thickness of the coated carbon shell, and this strategy is also applicable to the synthesis of double-confined Pt<sub>1</sub>Fe<sub>1</sub> and Pt<sub>1</sub>Cu<sub>1</sub> intermetallic nanoparticles.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"129 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directional Mushroom-Derived Scaffold for Microenvironment Regulation in Infected Bone Defects
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202407730
Ganghua Yang, Hao Pan, Yuxuan Wei, Jianqiu Yang, Zihan Zhang, Shixuan Chen, Wenbing Wan
{"title":"Directional Mushroom-Derived Scaffold for Microenvironment Regulation in Infected Bone Defects","authors":"Ganghua Yang, Hao Pan, Yuxuan Wei, Jianqiu Yang, Zihan Zhang, Shixuan Chen, Wenbing Wan","doi":"10.1002/adma.202407730","DOIUrl":"https://doi.org/10.1002/adma.202407730","url":null,"abstract":"Infected bone defects are a common clinical condition, but conventional treatments often fail to achieve the desired outcomes, including addressing antibiotic resistance and preventing nonunion complications. In the presented study, a functionalized decellularized mushroom stem scaffold is developed composed of its naturally aligned channels, Zn<sup>2+</sup>/curcumin MOFs, hydroxyapatite minerals, and icariin. In vitro, It is found that functionalized acellular mushroom stem scaffold can control bacterial infections through Zn<sup>2+</sup>/curcumin MOFs. The naturally aligned channels guide bone mesenchymal stem cells (BMSCs) migration, and the components adsorbed on the acellular substrate further promote the migration of BMSCs. Moreover, these functional components further accelerated the polarization of M2 macrophage and osteogenic differentiation of BMSCs. In vivo, the functionalized decellularized mushroom stem scaffold cleared infected bacteria within 3 days, induced extracellular matrix secretion and alignment, and promoted new bone formation to cover defects within 8 weeks. The functionalized decellularized mushroom stem scaffold provides a promising strategy for treating infectious bone defects.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"24 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemically Driven Optical Dynamics of Reflectin Protein Films
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202411005
Yin-Chen Lin, Changxuan Yang, Seren Tochikura, Joshua R. Uzarski, Daniel E. Morse, Lior Sepunaru, Michael J. Gordon
{"title":"Electrochemically Driven Optical Dynamics of Reflectin Protein Films","authors":"Yin-Chen Lin, Changxuan Yang, Seren Tochikura, Joshua R. Uzarski, Daniel E. Morse, Lior Sepunaru, Michael J. Gordon","doi":"10.1002/adma.202411005","DOIUrl":"https://doi.org/10.1002/adma.202411005","url":null,"abstract":"Neuronally triggered phosphorylation drives the dynamic condensation of reflectin proteins, enabling squid to fine tune the colors reflected from specialized skin cells (iridocytes) for camouflage and communication. Reflectin, the primary component of iridocyte lamellae, forms alternating layers of protein and low refractive index extracellular space within membrane-encapsulated structures, acting as a biologically tunable distributed Bragg reflector. In vivo, reflectin condensation induces osmotic dehydration of these lamellae, reducing their thickness and shifting the wavelength of reflected light. Inspired by this natural mechanism, we demonstrate that electrochemical reduction of imidazolium moieties within the protein provides a reversible and tunable method to control the water volume fraction in reflectin thin films, allowing precise, dynamic modulation of the film’s refractive index and thickness — mimicking the squid’s dynamic color adaptation. To unravel the underlying mechanisms, we developed electrochemical correlative ellipsometry and surface plasmon resonance spectroscopy, enabling real-time analysis of optical property changes of reflectin films. This electrochemically driven approach offers unprecedented control over reflectin condensation dynamics. Our findings not only deepen the understanding of biophysical processes governing cephalopod coloration but also pave the way for bio-inspired materials and devices that seamlessly integrate biological principles with synthetic systems to bridge the biotic-abiotic gap.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"1 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Transplantation via Magnetically Responsive Artificial Cells Promotes Intracerebral Hemorrhage Recovery by Supporting Microglia Immunological Homeostasis
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202500303
Mi Zhou, Jinhui Zang, Yuxuan Qian, Qiang Zhang, Yifan Wang, Tingting Yao, Hongyu Yan, Kai Zhang, Xiaojun Cai, Lixian Jiang, Yuanyi Zheng
{"title":"Mitochondrial Transplantation via Magnetically Responsive Artificial Cells Promotes Intracerebral Hemorrhage Recovery by Supporting Microglia Immunological Homeostasis","authors":"Mi Zhou, Jinhui Zang, Yuxuan Qian, Qiang Zhang, Yifan Wang, Tingting Yao, Hongyu Yan, Kai Zhang, Xiaojun Cai, Lixian Jiang, Yuanyi Zheng","doi":"10.1002/adma.202500303","DOIUrl":"https://doi.org/10.1002/adma.202500303","url":null,"abstract":"The immune-inflammatory responses in the brain represent a key therapeutic target to ameliorate brain injury following intracerebral hemorrhage (ICH), where pro-inflammatory microglia and its mitochondrial dysfunction plays a pivotal role. Mitochondrial transplantation is a promising strategy to improve the cellular mitochondrial function and thus modulate their immune properties. However, the transplantation of naked mitochondria into the brain has been constrained by the peripheral clearance and the difficulty in achieving selective access to the brain. Here, a novel strategy for mitochondrial transplantation via intravenous injection of magnetically responsive artificial cells (ACs) are proposed. ACs can protect the loaded mitochondria and selectively accumulate around the lesion under an external magnetic field (EMF). In this study, mitochondria released from ACs can effectively improve microglial mitochondrial function, attenuate their pro-inflammatory attributes, and elevate the proportion of immunosuppressive microglia. In this way, microglia immune homeostasis in the brain is reestablished, and inflammation is attenuated, ultimately promoting functional recovery. This study presents an effective approach to transplant mitochondria into the brain, offering a promising alternative to modulate the immune-inflammatory cascade in the brain following ICH.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhodamine B-Derived Low-Toxicity Full-Color Carbon Dots with Wide Tunable High-Stable Liquid-State Lasers
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202420197
Yongqiang Zhang, Xueyan Ren, Xinran Zhao, Shurong Ding, Xueting Wu, Yue Liu, Xiao Zeng, Xiaoli Qu, Haoqiang Song, Yongsheng Hu, Linlin Shi, Siyu Lu
{"title":"Rhodamine B-Derived Low-Toxicity Full-Color Carbon Dots with Wide Tunable High-Stable Liquid-State Lasers","authors":"Yongqiang Zhang, Xueyan Ren, Xinran Zhao, Shurong Ding, Xueting Wu, Yue Liu, Xiao Zeng, Xiaoli Qu, Haoqiang Song, Yongsheng Hu, Linlin Shi, Siyu Lu","doi":"10.1002/adma.202420197","DOIUrl":"https://doi.org/10.1002/adma.202420197","url":null,"abstract":"Carbon dots (CDs) serve as a novel, non-toxic, cost-effective, and highly-stable solution-processable nanolaser material. However, compared to commonly used commercial laser dyes, CDs exhibit lower photoluminescence quantum yields (PLQYs), radiation transition rates, and gain coefficients. Consequently, this leads to higher laser thresholds that significantly impede the expansion of practical applications for CDs. Therefore, enhancing the gain performance of CDs is crucial in guiding the design of CD gain materials and promoting their practical applications. Herein, Rhodamine B (RhB) is employed as a sole precursor for the synthesis of full-color CDs (FCDs) with vibrant blue, green, yellow, red, and NIR (denoted as B-CDs, G-CDs, Y-CDs, R-CDs, and NIR-CDs) fluorescence through cross-linking, polymerization, and carbonization processes. The photoluminescence (PL) spectra ranged from 434 to 703 nm. Notably, the PLQYs and gain performance of FCDs are improved due to cross-linked enhanced emission (CEE) effects. Green, yellow, red, and NIR laser emission is achieved with lower laser thresholds and exhibited superior laser stabilities than RhB. Furthermore, cytotoxicity tests confirm that FCDs possess significantly lower toxicity than RhB. This study not only validates the applicability of CEE in CDs for developing multicolor gain materials but also advances the practical application of miniaturized lasers based on CDs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls-Modulated Hydrogen Migration over Nonreducible Oxides
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202500371
Shi-Lin Xu, Wei Wang, Hao-Tong Li, Yu-Xiang Gao, Yuan Min, Peigen Liu, Xusheng Zheng, Dong-Feng Liu, Jie-Jie Chen, Han-Qing Yu, Xiao Zhou, Yuen Wu
{"title":"Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls-Modulated Hydrogen Migration over Nonreducible Oxides","authors":"Shi-Lin Xu, Wei Wang, Hao-Tong Li, Yu-Xiang Gao, Yuan Min, Peigen Liu, Xusheng Zheng, Dong-Feng Liu, Jie-Jie Chen, Han-Qing Yu, Xiao Zhou, Yuen Wu","doi":"10.1002/adma.202500371","DOIUrl":"https://doi.org/10.1002/adma.202500371","url":null,"abstract":"The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu<sub>1</sub>/SiO<sub>2</sub>) is designed and uncover that the surface hydroxyls on SiO<sub>2</sub> can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu<sub>1</sub>/SiO<sub>2</sub> catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu<sub>1</sub>/SiO<sub>2</sub>. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"5 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology-Oriented Lymph Node Drainage of Dendritic Polymer-TLR Agonist Conjugates to Enhance Vaccine Immunogenicity
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202417704
Long Ren, Bing Wang, Di Miao, Pan Xiang, Zhen Zeng, Zhiqian Li, Xiaoting Chen, Chenjie Xu, Qiyong Gong, Kui Luo, Jing Jing
{"title":"Topology-Oriented Lymph Node Drainage of Dendritic Polymer-TLR Agonist Conjugates to Enhance Vaccine Immunogenicity","authors":"Long Ren, Bing Wang, Di Miao, Pan Xiang, Zhen Zeng, Zhiqian Li, Xiaoting Chen, Chenjie Xu, Qiyong Gong, Kui Luo, Jing Jing","doi":"10.1002/adma.202417704","DOIUrl":"https://doi.org/10.1002/adma.202417704","url":null,"abstract":"Strategically targeting lymph nodes (LNs) to orchestrate the initiation and regulation of adaptive immune responses is one of the most pressing challenges in the context of vaccination. Herein, a series of polymer-TLR agonist conjugates (PTACs) is developed to investigate the impact of dendritic-topological characteristics on their LN targeting activity in vivo, and their molecular weight (MW) on their pharmacokinetics in support of their LN homing. Notably, the dendritic 6-arm PTAC with a MW of 60 kDa (6A-PTAC-60k) rapidly delivered cargo to draining LNs after administration to peripheral tissues. Specifically, this topologic structure ameliorated the targeting behavior within lymphatic vessels and LNs, including an elevated amount of TLR7/8 agonist delivered to the LNs, an improved distribution pattern among barrier cells and immune cells, increased permeability, and prolonged retention. Furthermore, the 6A-PTAC-60k formulation induced broad antibody and T cell responses, enhancing vaccine immunogenicity and suppressing tumor growth. The results revealed that both the topology and MW of polymers are crucial factors for immunoadjuvant distribution and their functional activity in the draining LNs, which, in turn, enhanced the immunogenicity of the vaccine formulation. This study may provide a chemical and structural basis for optimizing the design of immunoadjuvant delivery systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"70 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-Dot-Electrolyte Light-Emitting Diodes for Displays
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202417330
Yunfei Ren, Xiaoci Liang, Xiuyuan Lu, Baiquan Liu, Li Zhang, Lingjiao Zhang, Yi Huang, Huajian Zheng, Yizheng Jin, Chuan Liu
{"title":"Quantum-Dot-Electrolyte Light-Emitting Diodes for Displays","authors":"Yunfei Ren, Xiaoci Liang, Xiuyuan Lu, Baiquan Liu, Li Zhang, Lingjiao Zhang, Yi Huang, Huajian Zheng, Yizheng Jin, Chuan Liu","doi":"10.1002/adma.202417330","DOIUrl":"https://doi.org/10.1002/adma.202417330","url":null,"abstract":"Electroluminescence (EL) is essential for modern technologies, such as displays, lighting, and optical communications. To date, some kinds of artificial EL devices have been developed, including organic light-emitting diodes (OLEDs), quantum-dot (QD) LEDs, and light-emitting electrochemical cells. However, issues (e.g., inefficient charge injection, exciton quenching) limit the further EL performance. Here, another promising kind of EL device is reported, which is called QD-electrolyte LED (QE-LED). The key feature of QE-LED is that an ionic liquid is doped into QDs as the electrolyte emitter of multi-layer device architectures. Both theoretical and experimental analyses reveal that an enhanced interface electric field from the in situ formed electrical double layer is leveraged to improve the charge injection and transport. With the introduction of insulating polymers into QD-electrolyte emitters, red QE-LED achieves an external quantum efficiency of 20.5% and a lifetime (T<sub>95</sub>) over 3.74 × 10<sup>5</sup> h at the display-related luminance of 100 cd m<sup>−2</sup>, indicating that the QE-LED is among the best EL devices. Furthermore, an active-matrix QE-LED display is demonstrated with superior stability that overtakes the commercial benchmark. These results offer an avenue to discover unexplored EL devices and provide potential pathways to enhance charge dynamics for EL devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"85 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor Organic Single-Crystal Microcavity Light Emitting Diodes With High Color-Purity and High Brightness
IF 29.4 1区 材料科学
Advanced Materials Pub Date : 2025-02-17 DOI: 10.1002/adma.202418278
Han Huang, Ruiyang Zhao, Yunfei Li, Ying Ji, Yuan Li, Yibo Deng, Qing Liao, Hongbing Fu
{"title":"Multicolor Organic Single-Crystal Microcavity Light Emitting Diodes With High Color-Purity and High Brightness","authors":"Han Huang, Ruiyang Zhao, Yunfei Li, Ying Ji, Yuan Li, Yibo Deng, Qing Liao, Hongbing Fu","doi":"10.1002/adma.202418278","DOIUrl":"https://doi.org/10.1002/adma.202418278","url":null,"abstract":"The development of ultra-high-definition (UHD) displays demands organic light-emitting diodes (OLEDs) with high color purity of all three primary colors for a wide color gamut and high brightness essential for future AR/VR applications. However, the vibronic coupling in organic emitters typically results in broad emissions, with a full width at half maximum (FWHM) exceeding 40–50 nm. Herein, multicolor organic single-crystal microcavity light-emitting diodes (SC-MC-OLEDs) are demonstrated by embedding ultrathin 2D organic single crystals (2D-OSCs) between two silver layers that serve as both electrodes and mirrors. By leveraging the microcavity effect, the resonant output frequencies of SC-MC-OLEDs can be continuously tuned from 448 to 602 nm by adjusting the thickness of 2D-OSCs (i.e., the microcavity length), achieving high color purity with a full width at half maximum (FWHM) of &lt;10 nm. Furthermore, the Purcell effect in SC-MC-OLEDs enhances the radiative rate and improves light-coupling efficiency, resulting in a maximum external quantum efficiency (EQE) of up to 4% and minimal efficiency roll-off. Due to the excellent bipolar transport properties of OSCs, the brightness of SC-MC-OLEDs surpasses 10<sup>6</sup> cd m<sup>−2</sup>, along with a degree of linear polarization exceeding 0.9, unlocking new application opportunities.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"29 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信