Jianhua Zhang,Kai-Ling Zhou,Yongzheng Zhang,Hao Wang
{"title":"All-Round Enhancement of Wide pH Hydrogen Evolution Enabled by Tungsten-Based Amorphous Alloy-Mediated Adjacent Platinum Atoms.","authors":"Jianhua Zhang,Kai-Ling Zhou,Yongzheng Zhang,Hao Wang","doi":"10.1002/adma.202511276","DOIUrl":null,"url":null,"abstract":"Electrochemical water splitting based on single-atom catalysts (SACs) offers a sustainable route for hydrogen production. However, conventional SACs suffer from weak synergistic effects in harsh electrolytes. Here, we report a tungsten-based amorphous alloy (FeNiWPB) supported adjacent Platinum single-atom catalyst (PtASSA@FeNiWPB). Spectroscopic and computational analyses disclose that the amorphous W-based alloy matrix provides abundant defect sites to anchor and mediate adjacent Pt atoms, thereby boosting multiple H conversions via metal-metal synergy. Additionally, the catalyst's corrosion resistance is significantly enhanced through the formation of robust M─W bonds (M═Pt, Fe, Ni), which effectively suppress metal leaching across broad pH ranges. Furthermore, the formation of Pt-W/Fe/Ni polarized pairs at the alloy surface via Pt-support interactions induces electron redistribution and accelerates H*/OH* adsorption kinetics, thereby enhancing multiple H2O* dissociation pathways. Consequently, PtASSA@FeNiWPB exhibits ultralow overpotentials of 17 mV (acidic) and 18 mV (alkaline) at -10 mA cm-2, with mass activities 5.8 times (acidic) and 63.6 times (alkaline) higher than commercial Pt/C. Notably, it maintains performance for 600 h in both acidic and alkaline environments, far exceeding W-free counterparts (<50 h) and previous reports, positioning it at the forefront of HER performance. This work establishes a universal strategy for engineering durable electrocatalysts.Electrochemical water splitting based on single-atom catalysts (SACs) offers a sustainable route for hydrogen production. However, conventional SACs suffer from weak synergistic effects in harsh electrolytes. Here, we report a tungsten-based amorphous alloy (FeNiWPB) supported adjacent Platinum single-atom catalyst (PtASSA@FeNiWPB). Spectroscopic and computational analyses disclose that the amorphous W-based alloy matrix provides abundant defect sites to anchor and mediate adjacent Pt atoms, thereby boosting multiple H conversions via metal-metal synergy. Additionally, the catalyst's corrosion resistance is significantly enhanced through the formation of robust M─W bonds (M═Pt, Fe, Ni), which effectively suppress metal leaching across broad pH ranges. Furthermore, the formation of Pt-W/Fe/Ni polarized pairs at the alloy surface via Pt-support interactions induces electron redistribution and accelerates H*/OH* adsorption kinetics, thereby enhancing multiple H2O* dissociation pathways. Consequently, PtASSA@FeNiWPB exhibits ultralow overpotentials of 17 mV (acidic) and 18 mV (alkaline) at -10 mA cm-2, with mass activities 5.8 times (acidic) and 63.6 times (alkaline) higher than commercial Pt/C. Notably, it maintains performance for 600 h in both acidic and alkaline environments, far exceeding W-free counterparts (<50 h) and previous reports, positioning it at the forefront of HER performance. This work establishes a universal strategy for engineering durable electrocatalysts.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"96 1","pages":"e11276"},"PeriodicalIF":26.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202511276","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical water splitting based on single-atom catalysts (SACs) offers a sustainable route for hydrogen production. However, conventional SACs suffer from weak synergistic effects in harsh electrolytes. Here, we report a tungsten-based amorphous alloy (FeNiWPB) supported adjacent Platinum single-atom catalyst (PtASSA@FeNiWPB). Spectroscopic and computational analyses disclose that the amorphous W-based alloy matrix provides abundant defect sites to anchor and mediate adjacent Pt atoms, thereby boosting multiple H conversions via metal-metal synergy. Additionally, the catalyst's corrosion resistance is significantly enhanced through the formation of robust M─W bonds (M═Pt, Fe, Ni), which effectively suppress metal leaching across broad pH ranges. Furthermore, the formation of Pt-W/Fe/Ni polarized pairs at the alloy surface via Pt-support interactions induces electron redistribution and accelerates H*/OH* adsorption kinetics, thereby enhancing multiple H2O* dissociation pathways. Consequently, PtASSA@FeNiWPB exhibits ultralow overpotentials of 17 mV (acidic) and 18 mV (alkaline) at -10 mA cm-2, with mass activities 5.8 times (acidic) and 63.6 times (alkaline) higher than commercial Pt/C. Notably, it maintains performance for 600 h in both acidic and alkaline environments, far exceeding W-free counterparts (<50 h) and previous reports, positioning it at the forefront of HER performance. This work establishes a universal strategy for engineering durable electrocatalysts.Electrochemical water splitting based on single-atom catalysts (SACs) offers a sustainable route for hydrogen production. However, conventional SACs suffer from weak synergistic effects in harsh electrolytes. Here, we report a tungsten-based amorphous alloy (FeNiWPB) supported adjacent Platinum single-atom catalyst (PtASSA@FeNiWPB). Spectroscopic and computational analyses disclose that the amorphous W-based alloy matrix provides abundant defect sites to anchor and mediate adjacent Pt atoms, thereby boosting multiple H conversions via metal-metal synergy. Additionally, the catalyst's corrosion resistance is significantly enhanced through the formation of robust M─W bonds (M═Pt, Fe, Ni), which effectively suppress metal leaching across broad pH ranges. Furthermore, the formation of Pt-W/Fe/Ni polarized pairs at the alloy surface via Pt-support interactions induces electron redistribution and accelerates H*/OH* adsorption kinetics, thereby enhancing multiple H2O* dissociation pathways. Consequently, PtASSA@FeNiWPB exhibits ultralow overpotentials of 17 mV (acidic) and 18 mV (alkaline) at -10 mA cm-2, with mass activities 5.8 times (acidic) and 63.6 times (alkaline) higher than commercial Pt/C. Notably, it maintains performance for 600 h in both acidic and alkaline environments, far exceeding W-free counterparts (<50 h) and previous reports, positioning it at the forefront of HER performance. This work establishes a universal strategy for engineering durable electrocatalysts.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.