Fe/Co Co-Doping Engineering for Corrosion-Resistant and Effective Seawater Electrolysis.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianxi Lu,Zhichao Yu,Xiaotian Wei,Xuewei Zhang,Xin Wang,Kai Liu,Yaohai Cai,Hui Pan,Dong Liu,Zhenbo Wang
{"title":"Fe/Co Co-Doping Engineering for Corrosion-Resistant and Effective Seawater Electrolysis.","authors":"Jianxi Lu,Zhichao Yu,Xiaotian Wei,Xuewei Zhang,Xin Wang,Kai Liu,Yaohai Cai,Hui Pan,Dong Liu,Zhenbo Wang","doi":"10.1002/adma.202515156","DOIUrl":null,"url":null,"abstract":"Direct seawater electrolysis is a promising strategy for sustainable hydrogen production, yet it faces critical challenges in catalyst design, including scalability, chloride corrosion resistance, and cost efficiency. A one-step interfacial redox strategy is reported to construct Fe/Co co-doped Ru@Ni(OH)2 electrodes (Ru@FeCo-Ni(OH)2), enabling precise control of metal coordination environments while ensuring industrial-scale manufacturability. This method enables the fabrication of 5000 cm2 electrodes with no performance deviation, demonstrating compatibility with commercial electrolyzers. The Ru@FeCo-Ni(OH)2 electrodes exhibit remarkable durability (>3000 h) and achieve hydrogen production at $0.87 per kg using natural seawater from the South China Sea (unpurified, with KOH added), surpassing the U.S. Department of Energy's 2031 cost target of $1 per kg. Operando spectroscopy and DFT calculations reveal a synergistic co-doping mechanism: 1) d-band center downshifting (ΔE = 0.68 eV) optimizes hydrogen adsorption for superior hydrogen evolution reaction performance, while 2) accelerated surface reconstruction forms chloride-resistant oxyhydroxide layers, improving oxygen evolution reaction efficiency. This work establishes a new paradigm in bifunctional catalyst design, providing mechanistic insights into active site evolution and a scalable pathway for cost-effective green hydrogen production directly from seawater.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"95 1","pages":"e15156"},"PeriodicalIF":26.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202515156","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct seawater electrolysis is a promising strategy for sustainable hydrogen production, yet it faces critical challenges in catalyst design, including scalability, chloride corrosion resistance, and cost efficiency. A one-step interfacial redox strategy is reported to construct Fe/Co co-doped Ru@Ni(OH)2 electrodes (Ru@FeCo-Ni(OH)2), enabling precise control of metal coordination environments while ensuring industrial-scale manufacturability. This method enables the fabrication of 5000 cm2 electrodes with no performance deviation, demonstrating compatibility with commercial electrolyzers. The Ru@FeCo-Ni(OH)2 electrodes exhibit remarkable durability (>3000 h) and achieve hydrogen production at $0.87 per kg using natural seawater from the South China Sea (unpurified, with KOH added), surpassing the U.S. Department of Energy's 2031 cost target of $1 per kg. Operando spectroscopy and DFT calculations reveal a synergistic co-doping mechanism: 1) d-band center downshifting (ΔE = 0.68 eV) optimizes hydrogen adsorption for superior hydrogen evolution reaction performance, while 2) accelerated surface reconstruction forms chloride-resistant oxyhydroxide layers, improving oxygen evolution reaction efficiency. This work establishes a new paradigm in bifunctional catalyst design, providing mechanistic insights into active site evolution and a scalable pathway for cost-effective green hydrogen production directly from seawater.
Fe/Co共掺杂工程用于耐腐蚀有效的海水电解。
海水直接电解是一种很有前途的可持续制氢策略,但它在催化剂设计方面面临着严峻的挑战,包括可扩展性、抗氯化物腐蚀性和成本效率。据报道,一种一步界面氧化还原策略构建了Fe/Co共掺杂Ru@Ni(OH)2电极(Ru@FeCo-Ni(OH)2),能够精确控制金属配位环境,同时确保工业规模的可制造性。这种方法可以制造5000平方厘米的电极,没有性能偏差,证明了与商用电解槽的兼容性。Ru@FeCo-Ni(OH)2电极具有卓越的耐用性(>3000小时),使用来自中国南海的天然海水(未经净化,添加KOH),以每公斤0.87美元的成本生产氢气,超过了美国能源部2031年每公斤1美元的成本目标。Operando光谱和DFT计算揭示了协同共掺杂机制。1) d波段中心降位(ΔE = 0.68 eV)优化了析氢反应的吸氢性能,提高了析氢反应的性能;2)加速了表面重构,形成了耐氯化物的氢氧化物层,提高了析氢反应的效率。这项工作建立了双功能催化剂设计的新范例,为活性位点进化提供了机制见解,并为直接从海水中经济高效地生产绿色氢提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信