{"title":"对耐用锂硫电池的锂阳极多硫化物腐蚀现象的解读。","authors":"Yu-Jie Zhu,Chen-Xi Bi,Meng Zhao,Zheng Li,Wen-Jun Feng,Furong Sun,Xue-Qiang Zhang,Bo-Quan Li,Jia-Qi Huang","doi":"10.1002/adma.202506132","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur (Li-S) batteries are promising next-generation energy storage systems due to their ultrahigh theoretical energy density of 2600 Wh kg-1. However, soluble lithium polysulfides (LiPSs) violently corrode Li metal anodes, inducing rapid capacity decay and poor cycling lifespan of Li-S batteries. Herein, the corrosion of different LiPS species on the Li metal anode is systematically investigated. The corrosion rate of Li metal anode by Li2S8 and Li2S6 is higher than Li2S4. The discrepancy in corrosion rate is attributed to the continuous reaction between the LiPSs and Li metal, while the corrosion can hardly be prohibited by the LiPS-generated solid electrolyte interphase. Smaller Li nuclei size, more uniform Li deposition, and more durable cycling of Li metal anodes are found in Li2S4 electrolyte in comparison with Li2S8 and Li2S6 electrolytes. Consequently, a LiPS selection strategy is proposed to selectively inhibit the corrosion of high-order LiPSs and successfully prolong the cumulative capacity by 31% in Li-S batteries. This work clarifies the fundamentals of Li metal anode corrosion by different LiPS species and highlights the rational selection of favorable LiPS species for promoting the cycling durability of Li-S batteries.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"2 1","pages":"e2506132"},"PeriodicalIF":26.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Species-Dependent Polysulfide Corrosion on Lithium Anode Toward Durable Lithium-Sulfur Batteries.\",\"authors\":\"Yu-Jie Zhu,Chen-Xi Bi,Meng Zhao,Zheng Li,Wen-Jun Feng,Furong Sun,Xue-Qiang Zhang,Bo-Quan Li,Jia-Qi Huang\",\"doi\":\"10.1002/adma.202506132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-sulfur (Li-S) batteries are promising next-generation energy storage systems due to their ultrahigh theoretical energy density of 2600 Wh kg-1. However, soluble lithium polysulfides (LiPSs) violently corrode Li metal anodes, inducing rapid capacity decay and poor cycling lifespan of Li-S batteries. Herein, the corrosion of different LiPS species on the Li metal anode is systematically investigated. The corrosion rate of Li metal anode by Li2S8 and Li2S6 is higher than Li2S4. The discrepancy in corrosion rate is attributed to the continuous reaction between the LiPSs and Li metal, while the corrosion can hardly be prohibited by the LiPS-generated solid electrolyte interphase. Smaller Li nuclei size, more uniform Li deposition, and more durable cycling of Li metal anodes are found in Li2S4 electrolyte in comparison with Li2S8 and Li2S6 electrolytes. Consequently, a LiPS selection strategy is proposed to selectively inhibit the corrosion of high-order LiPSs and successfully prolong the cumulative capacity by 31% in Li-S batteries. This work clarifies the fundamentals of Li metal anode corrosion by different LiPS species and highlights the rational selection of favorable LiPS species for promoting the cycling durability of Li-S batteries.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"2 1\",\"pages\":\"e2506132\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202506132\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202506132","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deciphering the Species-Dependent Polysulfide Corrosion on Lithium Anode Toward Durable Lithium-Sulfur Batteries.
Lithium-sulfur (Li-S) batteries are promising next-generation energy storage systems due to their ultrahigh theoretical energy density of 2600 Wh kg-1. However, soluble lithium polysulfides (LiPSs) violently corrode Li metal anodes, inducing rapid capacity decay and poor cycling lifespan of Li-S batteries. Herein, the corrosion of different LiPS species on the Li metal anode is systematically investigated. The corrosion rate of Li metal anode by Li2S8 and Li2S6 is higher than Li2S4. The discrepancy in corrosion rate is attributed to the continuous reaction between the LiPSs and Li metal, while the corrosion can hardly be prohibited by the LiPS-generated solid electrolyte interphase. Smaller Li nuclei size, more uniform Li deposition, and more durable cycling of Li metal anodes are found in Li2S4 electrolyte in comparison with Li2S8 and Li2S6 electrolytes. Consequently, a LiPS selection strategy is proposed to selectively inhibit the corrosion of high-order LiPSs and successfully prolong the cumulative capacity by 31% in Li-S batteries. This work clarifies the fundamentals of Li metal anode corrosion by different LiPS species and highlights the rational selection of favorable LiPS species for promoting the cycling durability of Li-S batteries.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.