Syrine Krouna, Anissa Acheche, Guillaume Wang, Nathaly Ortiz Pena, Riccardo Gatti, Christian Ricolleau, Hakim Amara, Jaysen Nelayah, Damien Alloyeau
{"title":"Atomic-Scale Insights Into the Thermal Stability of High-Entropy Nanoalloys.","authors":"Syrine Krouna, Anissa Acheche, Guillaume Wang, Nathaly Ortiz Pena, Riccardo Gatti, Christian Ricolleau, Hakim Amara, Jaysen Nelayah, Damien Alloyeau","doi":"10.1002/adma.202414510","DOIUrl":"https://doi.org/10.1002/adma.202414510","url":null,"abstract":"<p><p>High entropy alloy nanoparticles bring hope to developing more efficient nanomaterials for high-temperature applications. Nevertheless, the enhanced thermal stability of nearly equiatomic nanoalloys containing at least 5 metals is nothing more than theoretical speculation about the impact of thermodynamic contributions on their structural properties and remains to be proven. Here, in situ aberration-corrected scanning transmission electron microscopy (STEM) and molecular dynamics simulations are combined to investigate at the atomic scale the thermal behavior of AuCoCuNiPt nanoparticles (NPs) from 298 to 973 K. Both in situ STEM heating and atomistic simulations reveal strong structural and chemical evolutions in the NPs with the formation and melting of an AuCu layer at the surface of NPs at high temperature. This phase separation that appears progressively with temperature is driven by pronounced atomic diffusion that is surprisingly more active in these quinary nanoalloys than in monometallic and bimetallic subsystems. Besides ruling out the existence of sluggish diffusion in AuCoCuNiPt nanoalloys and lowering their temperature range of application, the study allows distinguishing kinetic and thermodynamic effects on their structural properties, which is an essential prerequisite to better control the synthesis of complex nanomaterials.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2414510"},"PeriodicalIF":27.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gun Ho Lee, Seongsu Choi, HyunWoo Yang, SangJae Lee, Hanhwi Jang, Gyu Rac Lee, Ye Ji Kim, EunAe Cho, Yeon Sik Jung
{"title":"Self-Assembled Hollow Gyroids with Bicontinuous Mesostructures: A Highly Robust Electrocatalyst Fixation Platform","authors":"Gun Ho Lee, Seongsu Choi, HyunWoo Yang, SangJae Lee, Hanhwi Jang, Gyu Rac Lee, Ye Ji Kim, EunAe Cho, Yeon Sik Jung","doi":"10.1002/adma.202412525","DOIUrl":"https://doi.org/10.1002/adma.202412525","url":null,"abstract":"The electrochemical degradation of Pt/C in commercial proton exchange membrane fuel cells (PEMFCs) is a major challenge that limits their durability and performance. This degradation mainly arises from carbon corrosion, which facilitates the detachment of electrocatalyst particles that are weakly bound to catalyst supports. Herein, unusually robust hollow gyroid morphologies designed for strong electrocatalyst fixation and extensive surface accessibility during oxygen reduction reactions (ORR) are reported. To obtain self-assembled gyroid nanostructures using a poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) block copolymer, a solvent vapour treatment with dimethylformamide, which is highly selective for the P2VP block, is applied. It is discovered that retaining residual solvent in the gyroid-forming P2VP microdomain before carbonization is crucial for forming hollow gyroids with embedded electrocatalysts. These hollow gyroid carbon-Pt (HGC-Pt) nanostructures exhibit a 3.6-fold enhancement in electrochemically active surface area compared to solid gyroid carbon (SGC) counterparts. Based on systematic analyses, this exceptional electrochemical stability is attributed to greatly enhanced surface accessibility derived from the hollow geometry, uniform and robust catalyst embedding, and extensive pyridinic nitrogen doping from the P2VP block.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"18 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient PFAS Removal Using Reusable and Non-Toxic 3D Printed Porous Trianglamine Hydrogels","authors":"Arnaud Chaix, Chaimaa Gomri, Belkacem Tarek Benkhaled, Michel Habib, Romain Dupuis, Eddy Petit, Jason Richard, Antonin Segala, Laure Lichon, Christophe Nguyen, Magali Gary-Bobo, Sébastien Blanquer, Mona Semsarilar","doi":"10.1002/adma.202410720","DOIUrl":"https://doi.org/10.1002/adma.202410720","url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are now a paramount concern in water remediation. Nowadays, urgent action is required for the development of advanced technologies aimed at capturing PFAS and mitigating their impact. To offer a solution, a functional 3D printed hydrogel tailored is designed to trap a broad spectrum of PFAS contaminants. The hydrogel is made of a photo-crosslinked dimethacrylate-ureido-trianglamine (<b>DMU-Δ</b>) and Pluronic P123 dimethacrylate (<b>PDM</b>) fabricated by stereolithography (SLA). With the aid of 3D-printing, porous and nonporous hydrogels (<b>3D-PSHΔ, 3D-SHΔ</b>) as well as quaternized hydrogels (<b>3D-PSHΔQ<sup>+</sup></b>) are prepared. These tailored hydrogels, show high uptake capacities and fast removal kinetics for PFAS from aqueous sources. The PFAS removal efficiency of these hydrogels are then compared to P123 hydrogels with no trianglamine (<b>3D-SH</b>). The <b>3D-SH</b> hydrogel shows no affinity to PFAS, proving that the sorption is due to the interaction between the trianglamine (<b>Δ)</b> and PFAS. Metadynamic simulations also confirmed this interaction. The porous matrices showed the fastest and highest uptake capacity. <b>3D-PSHΔ</b> is able to capture ≈ 91% of PFAS within 5 h using initial concentrations of 5 and 0.5 ppm in both deionized and river water. The sorption of PFAS is further enhanced by introducing permanent positive charges to the structure of the porous hydrogels, resulting in even faster sorption kinetics for both long and short PFAS chains with diverse polar heads. Besides the remarkable efficiency in capturing PFAS, these designed hydrogels are non-toxic and have outstanding chemical and thermal stability, making them a brilliant candidate for mass use in the combat against PFAS pollution.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"66 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphene Readout Silicon-Based Microtube Photodetectors for Encrypted Visible Light Communication","authors":"Ziyu Zhang, Tianjun Cai, Zengxin Li, Binmin Wu, Zhi Zheng, Chunyu You, Guobang Jiang, Mingze Ma, Zengyi Xu, Chao Shen, Xiang-zhong Chen, Enming Song, Jizhai Cui, Gaoshan Huang, Yongfeng Mei","doi":"10.1002/adma.202413771","DOIUrl":"https://doi.org/10.1002/adma.202413771","url":null,"abstract":"The implementation of an advanced light receiver is imperative for the widespread application of visible light communication. However, the integration of multifunctional and high-performance visible light receivers is still limited by device structure and system complexity. Herein, a graphene-readout silicon-based microtube photodetector is proposed as the receiver for omnidirectional Mbps-level visible light communication. The integration of graphene-semiconductor material systems simultaneously ensures the effective absorption of incident light and rapid readout of photogenerated carriers, and the device exhibits an ultrafast response speed of 75 ns and high responsivity of 6803 A W<sup>−1</sup>. In addition, the microtube photodetector realizes the omnidirectional light-trapping and enhanced polarization photodetection. As the receiving end of the visible light communication system, the microtube photodetector achieves a data rate of up to 778 Mbps, a field of view of 140°, and the encrypted visible light communication of polarized light, providing a new possibility for the future development of the internet of things and information security.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"4 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combined Photopolymerization and Localized Photochromism by Aza-Diarylethene and Hemiindigo Synergy","authors":"Maximilian Sacherer, Henry Dube","doi":"10.1002/adma.202411223","DOIUrl":"https://doi.org/10.1002/adma.202411223","url":null,"abstract":"Molecular photoswitches produce light-controlled changes at the nanometer scale and can therefore be used to alter the states and behavior of materials in a truly bottom-up fashion. Here an escalating photonic complexity of material property control with light is shown using a recently developed aza-diarylethene in combination with hemiindigo (HI) photoswitches. First, aza-diarylethene can be used as a photoswitch in polystyrene (PS) to reversibly inscribe relief-type 3D structures into PS. Second, aza-diarylethene can further be used as a photoinitiator for light-induced polymerization of methyl acrylate (MA), demonstrating for the first time light-controlled chemical reactivity control with its zwitterionic switching state. Third, aza-diarylethene and HIs are implemented into aza-diarylethene polymerized MA, generating photochromic polymers. At the fourth level, a binary mixture allows to synergize aza-diarylethene-induced photopolymerization with localized photochromism changes of the simultaneously entrapped functional HI. With such multilevel light response, the utility of this particular photoswitch combination for applications in advanced photonic materials is demonstrated.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"61 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhi Xu, Tianyu Xiao, Yinghua Li, Yi Pan, Chen Li, Pan Liu, Qing Xu, Feng Tian, Liang Wu, Fugui Xu, Yiyong Mai
{"title":"Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts","authors":"Zhi Xu, Tianyu Xiao, Yinghua Li, Yi Pan, Chen Li, Pan Liu, Qing Xu, Feng Tian, Liang Wu, Fugui Xu, Yiyong Mai","doi":"10.1002/adma.202416204","DOIUrl":"https://doi.org/10.1002/adma.202416204","url":null,"abstract":"The surface curvature of catalysts has a decisive impact on their catalytic performance. However, the influence of a negative-Gaussian-curvature surface on the catalytic performance of porous catalysts has remained unexplored due to the lack of suitable samples. Bicontinuous-structured porous structures can serve as ideal models, but they are known as “Plumber's nightmare” due to their highly difficult preparation. Here, using metal–organic frameworks as the precursor and polymer cubosomes as the template, a <b>b</b>icontinuous <b>m</b>esoporous <b>Fe s</b>ingle-<b>a</b>tom <b>c</b>atalyst (named <i>bm</i>FeSAC) with a Schwarz P surface is synthesized. The <i>bm</i>FeSAC catalyst has a large specific surface area of 916 m<sup>2</sup> g<sup>−1</sup> and uniformly distributed Fe-N<sub>4</sub> active sites with a 1.80 wt.% Fe content. The continuous channels enabled high utilization efficiency of the Fe-N<sub>4</sub> catalytic sites, while the negative-Gaussian-curvature surface enabled low reaction energy barrier. As an electrocatalyst of the oxygen reduction reaction, <i>bm</i>FeSAC delivered a high half-wave potential of 0.931 V versus. RHE in alkaline electrolyte, reaching the leading level among those of the reported state-of-the-art electrocatalysts. Furthermore, the <i>bm</i>FeSAC-based Zn-air batteries exhibited excellent performance, demonstrating the potential application of <i>bm</i>FeSAC. This study revealed that a bicontinuous-structured porous structure can improve catalytic activity by increasing the utilization ratio of catalytic sites and, more importantly, by regulating the electronic structure of catalyst surfaces through the negative-Gaussian-curvature.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"4 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aggregate Science: from Molecules, beyond Molecules","authors":"Fulong Ma, Siwei Zhang, Jinhui Jiang, Yong Liu, Jianwei Sun, Jacky Wing Yip Lam, Zheng Zhao, Ben Zhong Tang","doi":"10.1002/adma.202414188","DOIUrl":"https://doi.org/10.1002/adma.202414188","url":null,"abstract":"Over the past centuries, molecular science has played a dominant role in the advancement of physical science by exploring the structure–property relationships at a single molecular level. However, when molecules form aggregates, a dilemma arises as the structures and properties often differ significantly from those of molecular constituents. To address this, the concept of aggregate science emphasizes a holistic approach to understanding the structures–properties relationship of substances. Despite the recognition of holism in aggregate research, there are still challenges in investigating the complex operations and interplays, particularly in understanding the newly emergent structures and properties in the macroscopic world. Therefore, there is a need to further advance the concept and methodology. In this regard, this perspective highlights three types of influences that aggregation exerts on substance properties: activation, transformation, and emergence. Furthermore, examples from aggregation-induced emission research and related fields are provided to illustrate how aggregate science can be studied. This perspective emphasizes that the molecule is of significance and the structures and properties are also dramatically influenced by aggregation. Additionally, potential research methodologies, such as focusing on intra- and intermolecular interactions, adjusting aggregates morphology, and regulating the constituents, along with directions, and implications are offered for future studies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"38 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dou Luo, Lifu Zhang, Jie Zeng, Hongyang Zhang, Lanqing Li, Tingting Dai, Baomin Xu, Erjun Zhou, Aung Ko Ko Kyaw, Yiwang Chen, Wai-Yeung Wong
{"title":"Upper Layer-Modulated Pseudo Planar Heterojunction with Metal Complex Acceptor for Efficient and Stable Organic Photovoltaics","authors":"Dou Luo, Lifu Zhang, Jie Zeng, Hongyang Zhang, Lanqing Li, Tingting Dai, Baomin Xu, Erjun Zhou, Aung Ko Ko Kyaw, Yiwang Chen, Wai-Yeung Wong","doi":"10.1002/adma.202410880","DOIUrl":"https://doi.org/10.1002/adma.202410880","url":null,"abstract":"Modulating self-aggregation and charge transport in the upper acceptor layer of the pseudo planar heterojunction (PPHJ) is crucial for enhancing dielectric constant and suppressing trap density, leading to efficient and stable organic photovoltaics (OPVs). In this work, a metal complex acceptor (MCA), PtAC-Cl, is selectively incorporated into the upper host Y6 layer of PPHJ to regulate morphology and fill trap states. There exists a strong chemical interaction between PtAC-Cl and Y6, which can promote electron transfer. PtAC-Cl can regulate the self-aggregation and extend the exciton diffusion length of Y6, resulting in enhanced charge transport and reduced energetic disorder. Consequently, upper layer-modulated PPHJ devices with PtAC-Cl achieved a significant power conversion efficiency of 18.16%. The universality of PtAC-Cl is also demonstrated in PM6/eC9 and PM6/L8-BO systems, achieving the highest PCEs of 18.79 and 19.30%, respectively. All the improved PCEs are mainly attributed to the enhanced fill factor (FF) and short circuit current (<i>J</i><sub>sc</sub>) compared with the controls. Additionally, PtAC-Cl significantly improves the thermal stability and photostability of the devices, with a <i>T</i><sub>80</sub> lifetime of ≈ 401 h under continuous illumination with simulated 1-Sun light and 1265 h under continuous heating at 70 °C. Overall, this work introduces the concept of MCA and proposes a practical and efficient method to enhance the efficiency and stability of OPVs through selective upper-layer modulation in PPHJ with MCA.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"254 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing the Electrical Microenvironment Provided by 3D Micropillar Topography on a Piezoelectric BaTiO3 Substrate to Enhance Osseointegration","authors":"Xiaowen Sun, Yaru Guo, Xiaona Zheng, Yunyang Bai, Yixuan Lu, Xue Yang, Ziming Cai, Erxiang Xu, Ying He, Boon Chin Heng, Mingming Xu, Xuliang Deng, Xuehui Zhang","doi":"10.1002/adma.202414161","DOIUrl":"https://doi.org/10.1002/adma.202414161","url":null,"abstract":"The electrical properties of bone implant scaffolds are a pivotal factor in regulating cellular behavior and promoting osteogenesis. The previous study shows that built-in electric fields established between electropositive nanofilms and electronegative bone defect walls are beneficial for promoting bone defect healing. Considering that the physiological electrical microenvironment is spatially distributed in 3D, it is imperative to establish a 3D spatial charged microenvironment on bone scaffolds to optimize the efficacy of osseointegration. Nevertheless, this still poses a formidable challenge. Here, a bone repair strategy that utilizes micro-scale 3D topography is developed on a piezoelectric BaTiO<sub>3</sub> (BTO) substrate to provide 3D spatial electrical stimulation. The BTO micropillar arrays, especially with a height of 50 µm and positive-charge distribution (50 µm positive), promote the spreading, cytoskeletal reorganization, focal adhesion maturation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). They enhanced the clustering of mechanosensing integrin α5 in BMSCs. The biomimetic 3D spatial electrical microenvironment accelerated bone repair and osseointegration in a rat femoral diaphysis defect repair model. The study thus reveals that implants with a 3D spatial electrical microenvironment can significantly enhance osseointegration, thereby providing a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yueyue He, Yin-Ying Ting, Hongrong Hu, Thomas Diemant, Yuting Dai, Jing Lin, Simon Schweidler, Gabriel Cadilha Marques, Horst Hahn, Yanjiao Ma, Torsten Brezesinski, Piotr M. Kowalski, Ben Breitung, Jasmin Aghassi-Hagmann
{"title":"Printed High-Entropy Prussian Blue Analogs for Advanced Non-Volatile Memristive Devices","authors":"Yueyue He, Yin-Ying Ting, Hongrong Hu, Thomas Diemant, Yuting Dai, Jing Lin, Simon Schweidler, Gabriel Cadilha Marques, Horst Hahn, Yanjiao Ma, Torsten Brezesinski, Piotr M. Kowalski, Ben Breitung, Jasmin Aghassi-Hagmann","doi":"10.1002/adma.202410060","DOIUrl":"https://doi.org/10.1002/adma.202410060","url":null,"abstract":"Non-volatile memristors dynamically switch between high (HRS) and low resistance states (LRS) in response to electrical stimuli, essential for electronic memories, neuromorphic computing, and artificial intelligence. High-entropy Prussian blue analogs (HE-PBAs) are promising insertion-type battery materials due to their diverse composition, high structural integrity, and favorable ionic conductivity. This work proposes a non-volatile, bipolar memristor based on HE-PBA. The device, featuring an active layer of HE-PBA sandwiched between Ag and ITO electrodes, is fabricated by inkjet printing and microplotting. The conduction mechanism of the Ag/HE-PBA/ITO device is systematically investigated. The results indicate that the transition between HRS and LRS is driven by an insulating-metallic transition, triggered by extraction/insertion of highly mobile Na<sup>+</sup> ions upon application of an electric field. The memristor operates through a low-energy process akin to Na<sup>+</sup> shuttling in Na-ion batteries rather than depending on formation/rupture of Ag filaments. Notably, it showcases promising characteristics, including non-volatility, self-compliance, and forming-free behavior, and further exhibits low operation voltage (<i>V</i><sub>SET</sub> = −0.26 V, <i>V</i><sub>RESET</sub> = 0.36 V), low power consumption (<i>P</i><sub>SET</sub> = 26 µW, <i>P</i><sub>RESET</sub> = 8.0 µW), and a high <i>R</i><sub>OFF</sub>/<i>R</i><sub>ON</sub> ratio of 10<sup>4</sup>. This underscores the potential of high-entropy insertion materials for developing printed memristors with distinct operation mechanisms.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"231 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}