纳米颗粒表面钉住CeO2使耐用高压锂离子电池成为可能

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zezhou Lin, Zhihang Xu, Yiran Ying, Gao Chen, Xi Gong, Daqin Guan, Yanhao Ren, Honglei Zhang, Xiao Sun, Zhaowen Bai, Yang Ren, Ting‐Shan Chan, Yu‐Cheng Huang, Ye Zhu, Peiyu Hou, Zongping Shao, Haitao Huang
{"title":"纳米颗粒表面钉住CeO2使耐用高压锂离子电池成为可能","authors":"Zezhou Lin, Zhihang Xu, Yiran Ying, Gao Chen, Xi Gong, Daqin Guan, Yanhao Ren, Honglei Zhang, Xiao Sun, Zhaowen Bai, Yang Ren, Ting‐Shan Chan, Yu‐Cheng Huang, Ye Zhu, Peiyu Hou, Zongping Shao, Haitao Huang","doi":"10.1002/adma.202517074","DOIUrl":null,"url":null,"abstract":"Elevating the cut‐off voltage of LiCoO<jats:sub>2</jats:sub> (LCO) cathode in lithium‐ion batteries (LIBs) enhances capacity but increases structural instability. While surface coatings are used to mitigate structural degradation at high voltages, conventional full coverage coatings often fail to withstand the cyclic mechanical stress, resulting in crack formation and performance decay. Here, a multifunctional CeO<jats:sub>2</jats:sub> nanoparticle (NP) pinning structure is designed as a surface coating on LCO (LCO@CeO<jats:sub>2</jats:sub>) to enable stable operation at a high cut‐off voltage of 4.6 V (vs Li/Li<jats:sup>+</jats:sup>). This surface pinning architecture balances structural integrity with minimal inactive material usage. The CeO<jats:sub>2</jats:sub> NPs are strategically anchored to the LCO surface, creating a pinning structure that accommodates volume changes and suppresses fracture formation in the cathode. Moreover, the CeO<jats:sub>2</jats:sub>‐mediated fast Li<jats:sup>+</jats:sup> transport pathways are established, improving high‐rate capability. The interspersed CeO<jats:sub>2</jats:sub> NPs also act as oxygen reservoirs, stabilizing reversible (O<jats:sub>2</jats:sub>)<jats:sup>3−</jats:sup> species during high‐voltage oxygen anionic redox reactions. Consequently, the optimized LCO@CeO<jats:sub>2</jats:sub> cathode achieves a capacity retention of 85.3% after 500 cycles at 1C and a high‐rate capacity of 124.8 mAh g<jats:sup>−1</jats:sup> at 10C. This CeO<jats:sub>2</jats:sub> NP pinning structure offers a novel practical strategy for designing durable high‐voltage layered cathodes.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"28 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano‐Particulate Surface Pinning of CeO2 Enables Durable High‐Voltage Lithium‐Ion Batteries\",\"authors\":\"Zezhou Lin, Zhihang Xu, Yiran Ying, Gao Chen, Xi Gong, Daqin Guan, Yanhao Ren, Honglei Zhang, Xiao Sun, Zhaowen Bai, Yang Ren, Ting‐Shan Chan, Yu‐Cheng Huang, Ye Zhu, Peiyu Hou, Zongping Shao, Haitao Huang\",\"doi\":\"10.1002/adma.202517074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elevating the cut‐off voltage of LiCoO<jats:sub>2</jats:sub> (LCO) cathode in lithium‐ion batteries (LIBs) enhances capacity but increases structural instability. While surface coatings are used to mitigate structural degradation at high voltages, conventional full coverage coatings often fail to withstand the cyclic mechanical stress, resulting in crack formation and performance decay. Here, a multifunctional CeO<jats:sub>2</jats:sub> nanoparticle (NP) pinning structure is designed as a surface coating on LCO (LCO@CeO<jats:sub>2</jats:sub>) to enable stable operation at a high cut‐off voltage of 4.6 V (vs Li/Li<jats:sup>+</jats:sup>). This surface pinning architecture balances structural integrity with minimal inactive material usage. The CeO<jats:sub>2</jats:sub> NPs are strategically anchored to the LCO surface, creating a pinning structure that accommodates volume changes and suppresses fracture formation in the cathode. Moreover, the CeO<jats:sub>2</jats:sub>‐mediated fast Li<jats:sup>+</jats:sup> transport pathways are established, improving high‐rate capability. The interspersed CeO<jats:sub>2</jats:sub> NPs also act as oxygen reservoirs, stabilizing reversible (O<jats:sub>2</jats:sub>)<jats:sup>3−</jats:sup> species during high‐voltage oxygen anionic redox reactions. Consequently, the optimized LCO@CeO<jats:sub>2</jats:sub> cathode achieves a capacity retention of 85.3% after 500 cycles at 1C and a high‐rate capacity of 124.8 mAh g<jats:sup>−1</jats:sup> at 10C. This CeO<jats:sub>2</jats:sub> NP pinning structure offers a novel practical strategy for designing durable high‐voltage layered cathodes.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202517074\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202517074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在锂离子电池(LIBs)中,提高LiCoO2 (LCO)阴极的截止电压可以提高容量,但也会增加结构的不稳定性。虽然表面涂层用于减轻高压下的结构退化,但传统的全覆盖涂层通常无法承受循环机械应力,导致裂纹形成和性能衰减。本文设计了一种多功能CeO2纳米颗粒(NP)钉钉结构作为LCO (LCO@CeO2)的表面涂层,使其能够在4.6 V (vs Li/Li+)的高截止电压下稳定运行。这种表面固定的建筑平衡了结构的完整性和最小的非活性材料的使用。CeO2 NPs被战略性地固定在LCO表面,形成一个固定结构,以适应体积变化并抑制阴极中的裂缝形成。此外,建立了CeO2介导的快速Li+传输途径,提高了高倍率的能力。在高压氧阴离子氧化还原反应中,分散的CeO2 NPs也起到了储氧器的作用,稳定了可逆的(O2)3−物质。因此,优化后的LCO@CeO2阴极在1C下循环500次后的容量保持率为85.3%,在10C下的高倍率容量为124.8 mAh g−1。这种CeO2 NP钉钉结构为设计耐用的高压层状阴极提供了一种新的实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano‐Particulate Surface Pinning of CeO2 Enables Durable High‐Voltage Lithium‐Ion Batteries
Elevating the cut‐off voltage of LiCoO2 (LCO) cathode in lithium‐ion batteries (LIBs) enhances capacity but increases structural instability. While surface coatings are used to mitigate structural degradation at high voltages, conventional full coverage coatings often fail to withstand the cyclic mechanical stress, resulting in crack formation and performance decay. Here, a multifunctional CeO2 nanoparticle (NP) pinning structure is designed as a surface coating on LCO (LCO@CeO2) to enable stable operation at a high cut‐off voltage of 4.6 V (vs Li/Li+). This surface pinning architecture balances structural integrity with minimal inactive material usage. The CeO2 NPs are strategically anchored to the LCO surface, creating a pinning structure that accommodates volume changes and suppresses fracture formation in the cathode. Moreover, the CeO2‐mediated fast Li+ transport pathways are established, improving high‐rate capability. The interspersed CeO2 NPs also act as oxygen reservoirs, stabilizing reversible (O2)3− species during high‐voltage oxygen anionic redox reactions. Consequently, the optimized LCO@CeO2 cathode achieves a capacity retention of 85.3% after 500 cycles at 1C and a high‐rate capacity of 124.8 mAh g−1 at 10C. This CeO2 NP pinning structure offers a novel practical strategy for designing durable high‐voltage layered cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信