Xiaohui Shan, Sen Chen, Weichen Feng, Xiyu Zhu, Bo Wang, Xudong Zhang, Ruizhi Yuan, Jianye Gao, Ziliang Cui, Hanchi Xu, Xin Liao, Bingjie Wu, Jing Liu
{"title":"各向异性3D打印碳纤维增强液态金属弹性体,协同增强电导率、热性能和防泄漏性能","authors":"Xiaohui Shan, Sen Chen, Weichen Feng, Xiyu Zhu, Bo Wang, Xudong Zhang, Ruizhi Yuan, Jianye Gao, Ziliang Cui, Hanchi Xu, Xin Liao, Bingjie Wu, Jing Liu","doi":"10.1002/adma.202511498","DOIUrl":null,"url":null,"abstract":"Developing multifunctional composites with high electrical/thermal conductivity and excellent flexibility remains a critical challenge for flexible electronics and thermal management systems. While liquid metal elastomers offer intrinsic softness and conductivity, their real‐world application is hindered by the trade‐off between outstanding dual conductivity (electrical and thermal) and leakage resistance. To tackle this issue, high‐stability carbon fiber‐reinforced liquid metal elastomer (CFLME) is fabricated via an integrated method: Ni plating on carbon fiber to enhance reactive wetting with liquid metal, followed by composite formation with elastomer and 3D printing for directional fiber alignment, yielding anisotropic CFLME. Such anisotropic architecture enables efficient conductive pathways along fiber axes, reducing the electrical percolation threshold to 25%, achieving a high electrical conductivity of 3.44 × 10⁵ S/m, and a thermal conductivity of 7.26 W/(m∙K). The fiber network securely locks liquid metal, enabling zero leakage under 400% strain, 1000‐cycle stretching, or 833 kPa compression. For practical applications, CFLME exhibits exceptional electromagnetic shielding (93.74 dB), high‐sensitivity biosensing with an 82.62 dB signal‐to‐noise ratio, and efficient thermal management (16 °C reduction vs liquid metal elastomer). This work demonstrates a dual‐innovation strategy of structural design and interfacial regulation, providing a robust solution for flexible electronics and thermal management applications with balanced performance.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"121 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic 3D‐Printed Carbon Fiber‐Reinforced Liquid Metal Elastomer for Synergistic Enhancement of Electrical Conductivity, Thermal Performance, and Leakage Resistance\",\"authors\":\"Xiaohui Shan, Sen Chen, Weichen Feng, Xiyu Zhu, Bo Wang, Xudong Zhang, Ruizhi Yuan, Jianye Gao, Ziliang Cui, Hanchi Xu, Xin Liao, Bingjie Wu, Jing Liu\",\"doi\":\"10.1002/adma.202511498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing multifunctional composites with high electrical/thermal conductivity and excellent flexibility remains a critical challenge for flexible electronics and thermal management systems. While liquid metal elastomers offer intrinsic softness and conductivity, their real‐world application is hindered by the trade‐off between outstanding dual conductivity (electrical and thermal) and leakage resistance. To tackle this issue, high‐stability carbon fiber‐reinforced liquid metal elastomer (CFLME) is fabricated via an integrated method: Ni plating on carbon fiber to enhance reactive wetting with liquid metal, followed by composite formation with elastomer and 3D printing for directional fiber alignment, yielding anisotropic CFLME. Such anisotropic architecture enables efficient conductive pathways along fiber axes, reducing the electrical percolation threshold to 25%, achieving a high electrical conductivity of 3.44 × 10⁵ S/m, and a thermal conductivity of 7.26 W/(m∙K). The fiber network securely locks liquid metal, enabling zero leakage under 400% strain, 1000‐cycle stretching, or 833 kPa compression. For practical applications, CFLME exhibits exceptional electromagnetic shielding (93.74 dB), high‐sensitivity biosensing with an 82.62 dB signal‐to‐noise ratio, and efficient thermal management (16 °C reduction vs liquid metal elastomer). This work demonstrates a dual‐innovation strategy of structural design and interfacial regulation, providing a robust solution for flexible electronics and thermal management applications with balanced performance.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202511498\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202511498","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anisotropic 3D‐Printed Carbon Fiber‐Reinforced Liquid Metal Elastomer for Synergistic Enhancement of Electrical Conductivity, Thermal Performance, and Leakage Resistance
Developing multifunctional composites with high electrical/thermal conductivity and excellent flexibility remains a critical challenge for flexible electronics and thermal management systems. While liquid metal elastomers offer intrinsic softness and conductivity, their real‐world application is hindered by the trade‐off between outstanding dual conductivity (electrical and thermal) and leakage resistance. To tackle this issue, high‐stability carbon fiber‐reinforced liquid metal elastomer (CFLME) is fabricated via an integrated method: Ni plating on carbon fiber to enhance reactive wetting with liquid metal, followed by composite formation with elastomer and 3D printing for directional fiber alignment, yielding anisotropic CFLME. Such anisotropic architecture enables efficient conductive pathways along fiber axes, reducing the electrical percolation threshold to 25%, achieving a high electrical conductivity of 3.44 × 10⁵ S/m, and a thermal conductivity of 7.26 W/(m∙K). The fiber network securely locks liquid metal, enabling zero leakage under 400% strain, 1000‐cycle stretching, or 833 kPa compression. For practical applications, CFLME exhibits exceptional electromagnetic shielding (93.74 dB), high‐sensitivity biosensing with an 82.62 dB signal‐to‐noise ratio, and efficient thermal management (16 °C reduction vs liquid metal elastomer). This work demonstrates a dual‐innovation strategy of structural design and interfacial regulation, providing a robust solution for flexible electronics and thermal management applications with balanced performance.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.