面向触觉-视觉信息识别和记忆的全光学神经突触的超灵敏Pa级持久性机械发光材料

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhijie Ye, Shuangqiang Fang, Tiancheng Zhang, Haoliang Cheng, JiaQi Ou, Jiali Yu, Yixi Zhuang, Rongjun Xie, Le Wang
{"title":"面向触觉-视觉信息识别和记忆的全光学神经突触的超灵敏Pa级持久性机械发光材料","authors":"Zhijie Ye, Shuangqiang Fang, Tiancheng Zhang, Haoliang Cheng, JiaQi Ou, Jiali Yu, Yixi Zhuang, Rongjun Xie, Le Wang","doi":"10.1002/adma.202514909","DOIUrl":null,"url":null,"abstract":"Mechanoluminescence (ML), a self‐recovering and passive luminescent modality, offers a promising path toward tactile‐visual all‐optical neuromorphic computing, potentially overcoming the inefficiency of von Neumann architecture. However, existing ML materials are hindered by high response thresholds and single‐mode luminescence, preventing sub‐kPa perception and multilevel neural transmission. Here, we employ Li<jats:sup>+</jats:sup>/Dy<jats:sup>3+</jats:sup> co‐doping in Sr<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub>:Eu<jats:sup>2+</jats:sup> (LSSO) to implement a defect engineering strategy that synergistically optimizes oxygen vacancies and suppresses strontium vacancies, achieving dual breakthroughs in sensitivity and signal clarity. This approach yields a record‐low ML threshold of 72 Pa—the only Pa‐level system achieved without external electricity or elastomeric structural modifications. This material also responds to sunlight, force, and heat, emulating diverse synaptic functions like tactile/optic nerve perception, short‐term potentiation, and memory. It exhibits a 7‐s persistent ML with a signal‐to‐noise ratio of 20.57 which is 15.6 times higher than commercial SrAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>:Eu<jats:sup>2+</jats:sup>,Dy<jats:sup>3+</jats:sup>, a micron‐scale imaging resolution (≈200 µm), and a 36‐hour memory capacity. These properties enable thermal‐activated information awakening and visual imaging over 1000 cycles, with a memory accuracy 209% superior to the Ebbinghaus curve. This work not only advances the design of all‐optical synapses but also forges a pivotal connection between ML and neuromorphic engineering, propelling energy‐efficient, light‐driven artificial intelligence.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"4 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive Pa‐Level Persistent Mechanoluminescent Material Toward All‐Optical Neural Synapses for Tactile‐Visual Information Recognition and Memory\",\"authors\":\"Zhijie Ye, Shuangqiang Fang, Tiancheng Zhang, Haoliang Cheng, JiaQi Ou, Jiali Yu, Yixi Zhuang, Rongjun Xie, Le Wang\",\"doi\":\"10.1002/adma.202514909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanoluminescence (ML), a self‐recovering and passive luminescent modality, offers a promising path toward tactile‐visual all‐optical neuromorphic computing, potentially overcoming the inefficiency of von Neumann architecture. However, existing ML materials are hindered by high response thresholds and single‐mode luminescence, preventing sub‐kPa perception and multilevel neural transmission. Here, we employ Li<jats:sup>+</jats:sup>/Dy<jats:sup>3+</jats:sup> co‐doping in Sr<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub>:Eu<jats:sup>2+</jats:sup> (LSSO) to implement a defect engineering strategy that synergistically optimizes oxygen vacancies and suppresses strontium vacancies, achieving dual breakthroughs in sensitivity and signal clarity. This approach yields a record‐low ML threshold of 72 Pa—the only Pa‐level system achieved without external electricity or elastomeric structural modifications. This material also responds to sunlight, force, and heat, emulating diverse synaptic functions like tactile/optic nerve perception, short‐term potentiation, and memory. It exhibits a 7‐s persistent ML with a signal‐to‐noise ratio of 20.57 which is 15.6 times higher than commercial SrAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>:Eu<jats:sup>2+</jats:sup>,Dy<jats:sup>3+</jats:sup>, a micron‐scale imaging resolution (≈200 µm), and a 36‐hour memory capacity. These properties enable thermal‐activated information awakening and visual imaging over 1000 cycles, with a memory accuracy 209% superior to the Ebbinghaus curve. This work not only advances the design of all‐optical synapses but also forges a pivotal connection between ML and neuromorphic engineering, propelling energy‐efficient, light‐driven artificial intelligence.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202514909\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202514909","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机械发光(ML)是一种自我恢复的被动发光方式,为触觉-视觉全光学神经形态计算提供了一条有希望的途径,有可能克服冯·诺伊曼结构的低效率。然而,现有的ML材料受到高响应阈值和单模发光的阻碍,阻碍了亚千帕感知和多级神经传递。在这里,我们采用Li+/Dy3+共掺杂Sr2SiO4:Eu2+ (LSSO)来实现缺陷工程策略,协同优化氧空位和抑制锶空位,实现灵敏度和信号清晰度的双重突破。这种方法产生了创纪录的低ML阈值72pa,这是唯一一种无需外部电力或弹性结构修改即可实现的Pa级系统。这种材料也对阳光、力和热做出反应,模拟不同的突触功能,如触觉/视神经感知、短期增强和记忆。它具有持续7秒的ML,信噪比为20.57,比商用SrAl2O4:Eu2+,Dy3+高15.6倍,微米级成像分辨率(≈200µm)和36小时的存储容量。这些特性使热激活信息唤醒和视觉成像超过1000个周期,记忆精度比艾宾浩斯曲线高209%。这项工作不仅推进了全光学突触的设计,而且在机器学习和神经形态工程之间建立了关键的联系,推动了节能、光驱动的人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasensitive Pa‐Level Persistent Mechanoluminescent Material Toward All‐Optical Neural Synapses for Tactile‐Visual Information Recognition and Memory
Mechanoluminescence (ML), a self‐recovering and passive luminescent modality, offers a promising path toward tactile‐visual all‐optical neuromorphic computing, potentially overcoming the inefficiency of von Neumann architecture. However, existing ML materials are hindered by high response thresholds and single‐mode luminescence, preventing sub‐kPa perception and multilevel neural transmission. Here, we employ Li+/Dy3+ co‐doping in Sr2SiO4:Eu2+ (LSSO) to implement a defect engineering strategy that synergistically optimizes oxygen vacancies and suppresses strontium vacancies, achieving dual breakthroughs in sensitivity and signal clarity. This approach yields a record‐low ML threshold of 72 Pa—the only Pa‐level system achieved without external electricity or elastomeric structural modifications. This material also responds to sunlight, force, and heat, emulating diverse synaptic functions like tactile/optic nerve perception, short‐term potentiation, and memory. It exhibits a 7‐s persistent ML with a signal‐to‐noise ratio of 20.57 which is 15.6 times higher than commercial SrAl2O4:Eu2+,Dy3+, a micron‐scale imaging resolution (≈200 µm), and a 36‐hour memory capacity. These properties enable thermal‐activated information awakening and visual imaging over 1000 cycles, with a memory accuracy 209% superior to the Ebbinghaus curve. This work not only advances the design of all‐optical synapses but also forges a pivotal connection between ML and neuromorphic engineering, propelling energy‐efficient, light‐driven artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信